Skip to main content
Top
Published in: Journal of Polymer Research 12/2017

01-11-2017 | ORIGINAL PAPER

Nanocomposite polyazomethine/reduced graphene oxide with enhanced conductivity

Authors: Sergei Kostromin, Natalya Saprykina, Elena Vlasova, Daniel Ţîmpu, Vasile Cozan, Sergei Bronnikov

Published in: Journal of Polymer Research | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We produced thermally reduced graphene oxide (rGO) by reduction of graphene oxide using a thermal shock followed by annealing at 800 °С. The PAZ/rGO nanocomposite comprised of conjugated azomethine polymer (PAZ) and rGO (2 wt%) was fabricated through solution blending method. Both PAZ/rGO nanocomposite and its components, PAZ and rGO, were investigated with wide-angle X-ray scattering, scanning electron microscopy, transmittance electron microscopy, and atomic force microscopy, Fourier transform infrared spectroscopy, UV-Vis spectroscopy, broadband dielectric spectrometry, four-probe conductivity method, and energy dispersive spectroscopy. Strong physical interaction rather than chemical one between the polymer matrix and rGO nanoparticles was found. Electrical conductivity of PAZ/rGO nanocomposite was detected to increase for four orders as compared with that of pure PAZ.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Paul DR, Robeson LM (2008) Polymer nanotechnology: Nanocomposites. Polymer 49:3187–3204CrossRef Paul DR, Robeson LM (2008) Polymer nanotechnology: Nanocomposites. Polymer 49:3187–3204CrossRef
2.
go back to reference Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51:3321–3343CrossRef Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51:3321–3343CrossRef
3.
go back to reference Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Progr Polym Sci 35:1350–1375CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Progr Polym Sci 35:1350–1375CrossRef
4.
go back to reference Jariwala D, Sangwan VK, Lauhon L, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860CrossRef Jariwala D, Sangwan VK, Lauhon L, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860CrossRef
5.
go back to reference Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141CrossRef Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141CrossRef
6.
go back to reference Badamshina E, Gafurova M (2012) Polymeric nanocomposites containing non-covalently bonded fullerene C60: properties and applications. J Mater Chem 22:9427–9438CrossRef Badamshina E, Gafurova M (2012) Polymeric nanocomposites containing non-covalently bonded fullerene C60: properties and applications. J Mater Chem 22:9427–9438CrossRef
7.
go back to reference Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28CrossRef Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28CrossRef
8.
go back to reference Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef
9.
go back to reference Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mat Chem 20:743–748CrossRef Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mat Chem 20:743–748CrossRef
10.
go back to reference Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21CrossRef Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21CrossRef
11.
go back to reference Wang J, Wang X, Xu M, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822CrossRef Wang J, Wang X, Xu M, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822CrossRef
12.
go back to reference Kashyap S, Pratihar SK, Behera SK (2016) Strong and ductile graphene oxide reinforced PVA nanocomposites. J Alloys Compounds 684:254–260CrossRef Kashyap S, Pratihar SK, Behera SK (2016) Strong and ductile graphene oxide reinforced PVA nanocomposites. J Alloys Compounds 684:254–260CrossRef
13.
go back to reference Xie F, Qi SH, Wu D (2016) A facile strategy for the reduction of graphene oxide and its effect on thermal conductivity of epoxy based composites. Express Polym Lett 10:470–478CrossRef Xie F, Qi SH, Wu D (2016) A facile strategy for the reduction of graphene oxide and its effect on thermal conductivity of epoxy based composites. Express Polym Lett 10:470–478CrossRef
14.
go back to reference Pron A, Rannou P (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progr Polym Sci 27:135–190CrossRef Pron A, Rannou P (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progr Polym Sci 27:135–190CrossRef
15.
go back to reference Omelchenko OD, Gribkova OL, Tameev AR, Vannikov AV (2014) The effect of the degree of graphene oxidation on the electric conductivity of nanocomposites based on a polyaniline complex. Tech Phys Lett 40:807–809CrossRef Omelchenko OD, Gribkova OL, Tameev AR, Vannikov AV (2014) The effect of the degree of graphene oxidation on the electric conductivity of nanocomposites based on a polyaniline complex. Tech Phys Lett 40:807–809CrossRef
16.
go back to reference Iakobson OD, Gribkova OL, Tameev AR, Kravchenko VV, Egorov AV, Vannikov AV (2016) Conductive composites of polyaniline–polyacid complex and graphene nanostacks. Synth Metals 211:89–98CrossRef Iakobson OD, Gribkova OL, Tameev AR, Kravchenko VV, Egorov AV, Vannikov AV (2016) Conductive composites of polyaniline–polyacid complex and graphene nanostacks. Synth Metals 211:89–98CrossRef
17.
go back to reference Imran SM, Kim Y, Shao GN, Hussain M, Choa Y, Kim HT (2014) Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization. J Mater Sci 49:1328–1335CrossRef Imran SM, Kim Y, Shao GN, Hussain M, Choa Y, Kim HT (2014) Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization. J Mater Sci 49:1328–1335CrossRef
18.
go back to reference Solonaru AM, Grigoras M (2017) Water-soluble polyaniline/graphene composites as materials for energy storage applications. Express Polym Lett 11:127–139CrossRef Solonaru AM, Grigoras M (2017) Water-soluble polyaniline/graphene composites as materials for energy storage applications. Express Polym Lett 11:127–139CrossRef
19.
go back to reference Iwan A, Sek D (2008) Processible polyazomethines and polyketanils: from aerospace to light-emitting diodes and other advanced applications. Prog Polym Sci 33:289–345CrossRef Iwan A, Sek D (2008) Processible polyazomethines and polyketanils: from aerospace to light-emitting diodes and other advanced applications. Prog Polym Sci 33:289–345CrossRef
20.
go back to reference Hussein MA, Abdel-Rahman MA, Asiri AM, Alamry KA, Aly KI (2012) Review on liquid crystalline polyazomethines polymers: basics, syntheses and characterization. Designed monomers. Polymers 15:431–463 Hussein MA, Abdel-Rahman MA, Asiri AM, Alamry KA, Aly KI (2012) Review on liquid crystalline polyazomethines polymers: basics, syntheses and characterization. Designed monomers. Polymers 15:431–463
21.
go back to reference Bronnikov S, Kostromin S, Musteaţa V, Cozan V (2015) Polyazomethine with m-tolylazo side groups: thermal, dielectric and conductive behaviour. Liq Cryst 42:1102–1110CrossRef Bronnikov S, Kostromin S, Musteaţa V, Cozan V (2015) Polyazomethine with m-tolylazo side groups: thermal, dielectric and conductive behaviour. Liq Cryst 42:1102–1110CrossRef
22.
go back to reference Bronnikov S, Podshivalov A, Kostromin S, Asandulesa M, Cozan V (2017) Electrical conductivity of polyazomethine/fullerene C60 nanocomposites. Phys Lett A 381:796–800CrossRef Bronnikov S, Podshivalov A, Kostromin S, Asandulesa M, Cozan V (2017) Electrical conductivity of polyazomethine/fullerene C60 nanocomposites. Phys Lett A 381:796–800CrossRef
23.
go back to reference Bronnikov S, Kostromin S, Musteaţa V, Cozan V (2016) Dielectric study of side-chain liquid crystalline polyazomethine/fullerene C60 nanocomposite. J Polym Res 23:54CrossRef Bronnikov S, Kostromin S, Musteaţa V, Cozan V (2016) Dielectric study of side-chain liquid crystalline polyazomethine/fullerene C60 nanocomposite. J Polym Res 23:54CrossRef
24.
go back to reference Cozan V, Iftime M, Sava I, Bronnikov S (2015) Synthesis and thermotropic properties of polyazomethines containing side chain azobenzene moieties. High Perform Polym 27:661–668CrossRef Cozan V, Iftime M, Sava I, Bronnikov S (2015) Synthesis and thermotropic properties of polyazomethines containing side chain azobenzene moieties. High Perform Polym 27:661–668CrossRef
25.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef
26.
go back to reference Punetha VD, Rana S, Yooc HJ, Chaurasiad A, McLeskey JT, Ramasamy MS, Sahoo NG, Cho JW (2017) Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog Polym Sci 67:1–47CrossRef Punetha VD, Rana S, Yooc HJ, Chaurasiad A, McLeskey JT, Ramasamy MS, Sahoo NG, Cho JW (2017) Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog Polym Sci 67:1–47CrossRef
27.
go back to reference Yin H, Dittrich B, Farooq M, Kerling S, Wartig K-A, Hofmann D, Huth C, Okolieocha C, Altstädt V, Schönhals A, Schartel B (2015) Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological properties. J Polym Res 22:140CrossRef Yin H, Dittrich B, Farooq M, Kerling S, Wartig K-A, Hofmann D, Huth C, Okolieocha C, Altstädt V, Schönhals A, Schartel B (2015) Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological properties. J Polym Res 22:140CrossRef
28.
go back to reference Seresht RJ, Jahanshahi M, Rashidi AM, Ghoreyshi AA (2013) Synthesis and characterization of thermally-reduced graphene. Iranica J Energy Environ 4:53–59 Seresht RJ, Jahanshahi M, Rashidi AM, Ghoreyshi AA (2013) Synthesis and characterization of thermally-reduced graphene. Iranica J Energy Environ 4:53–59
29.
go back to reference Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal YJ (2010) Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Mater 9:840–845CrossRef Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal YJ (2010) Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Mater 9:840–845CrossRef
30.
go back to reference Zhang C, Dabbs DM, Liu L-M, Aksay IA, Car R, Selloni A (2015) Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide. J Phys Chem C 119:18167–18176CrossRef Zhang C, Dabbs DM, Liu L-M, Aksay IA, Car R, Selloni A (2015) Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide. J Phys Chem C 119:18167–18176CrossRef
31.
go back to reference Huh SH (2011) Thermal reduction of graphene oxide. In: Mikhailov S (ed) Physics and applications of graphene – experiments. InTech Europe, Rijeka, Croatia, pp 73–90 Huh SH (2011) Thermal reduction of graphene oxide. In: Mikhailov S (ed) Physics and applications of graphene – experiments. InTech Europe, Rijeka, Croatia, pp 73–90
32.
go back to reference Omelchenko OD, Gribkova OL, Tameev AR, Novikov SV, Vannikov AV (2014) Thin nanocomposite layers based on a complex of polyaniline and graphene. Protect Metals Phys Chem Surf 50:613–619CrossRef Omelchenko OD, Gribkova OL, Tameev AR, Novikov SV, Vannikov AV (2014) Thin nanocomposite layers based on a complex of polyaniline and graphene. Protect Metals Phys Chem Surf 50:613–619CrossRef
33.
go back to reference Peng X-Y, Liu X-X, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496CrossRef Peng X-Y, Liu X-X, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496CrossRef
34.
go back to reference McDonald MP, Morozov Y, Hodak JH, Kuno M (2015) Spectroscopy and microscopy of graphene oxide and reduced graphene oxide. In: Gao W (ed) Graphene oxide. Reduction recipes, spectroscopy, and applications. Springer, Heidelberg, pp 29–60 McDonald MP, Morozov Y, Hodak JH, Kuno M (2015) Spectroscopy and microscopy of graphene oxide and reduced graphene oxide. In: Gao W (ed) Graphene oxide. Reduction recipes, spectroscopy, and applications. Springer, Heidelberg, pp 29–60
35.
go back to reference Merino E, Ribagorda M (2012) Control over molecular motion using the cis–trans photoisomerization of the azo group. Beilstein J Org Chem 8:1071–1090CrossRef Merino E, Ribagorda M (2012) Control over molecular motion using the cis–trans photoisomerization of the azo group. Beilstein J Org Chem 8:1071–1090CrossRef
36.
go back to reference Purohit PJ, Huacuja-Sanchez JE, Wang D-Y, Emmerling F, Thünemann A, Heinrich G, Schönhals A (2011) Structureproperty relationships of nanocomposites based on polypropylene and layered double hydroxides. Macromolecules 44:4342–4353CrossRef Purohit PJ, Huacuja-Sanchez JE, Wang D-Y, Emmerling F, Thünemann A, Heinrich G, Schönhals A (2011) Structureproperty relationships of nanocomposites based on polypropylene and layered double hydroxides. Macromolecules 44:4342–4353CrossRef
Metadata
Title
Nanocomposite polyazomethine/reduced graphene oxide with enhanced conductivity
Authors
Sergei Kostromin
Natalya Saprykina
Elena Vlasova
Daniel Ţîmpu
Vasile Cozan
Sergei Bronnikov
Publication date
01-11-2017
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 12/2017
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-017-1386-1

Other articles of this Issue 12/2017

Journal of Polymer Research 12/2017 Go to the issue

Premium Partners