Skip to main content
Top

2019 | OriginalPaper | Chapter

31. Nanofibers as Promising Materials for New Generations of Solar Cells

Authors : Ahmed Esmail Shalan, Ahmed Barhoum, Ahmed Mourtada Elseman, Mohamed Mohamed Rashad, Mónica Lira-Cantú

Published in: Handbook of Nanofibers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Various applications of nanotechnology have been intended to approach enhanced and efficient solar cell devices with more economically pathways. Effective systems for conversion cost, efficient solar energy storage systems, or solar energy on a large scale are created by efficient solar cells which improved using nanofiber (NF) materials. This chapter provides an overview of photovoltaic and solar cell devices (i.e., dye sensitize solar cells, organic solar cells, and perovskite solar cells) based on nanofibers (NFs) as a key element. Details about the main types of solar cells and their working principles and how engineered NFs are used for solar cells are discussed. The potential application of the three representative NF materials, i.e., metals and metal oxides, carbon, and conductive polymers, were reviewed. The future development of NFs toward next-generation solar cells is finally summarized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ondraczek J, Komendantova N, Patt A (2015) WACC the dog: the effect of financing costs on the levelized cost of solar PV power. Renew Energy 75:888–898CrossRef Ondraczek J, Komendantova N, Patt A (2015) WACC the dog: the effect of financing costs on the levelized cost of solar PV power. Renew Energy 75:888–898CrossRef
2.
go back to reference Ganesh I (2015) Solar fuels vis-à-vis electricity generation from sunlight: the current state-of-the-art (a review). Renew Sust Energ Rev 44:904–932CrossRef Ganesh I (2015) Solar fuels vis-à-vis electricity generation from sunlight: the current state-of-the-art (a review). Renew Sust Energ Rev 44:904–932CrossRef
3.
go back to reference Allouhi A, Saadani R, Kousksou T, Saidur R, Jamil A, Rahmoune M (2016) Grid-connected PV systems installed on institutional buildings: technology comparison, energy analysis and economic performance. Energ Buildings 130:188–201CrossRef Allouhi A, Saadani R, Kousksou T, Saidur R, Jamil A, Rahmoune M (2016) Grid-connected PV systems installed on institutional buildings: technology comparison, energy analysis and economic performance. Energ Buildings 130:188–201CrossRef
4.
go back to reference Sun H, Deng J, Qiu L, Fang X, Peng H (2015) Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ Sci 8:1139–1159CrossRef Sun H, Deng J, Qiu L, Fang X, Peng H (2015) Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ Sci 8:1139–1159CrossRef
5.
go back to reference Crabtree GW, Lewis NS (2007) Solar energy conversion. Phys Today 60:37–42CrossRef Crabtree GW, Lewis NS (2007) Solar energy conversion. Phys Today 60:37–42CrossRef
6.
go back to reference Scheer H (2002) The solar economy. Earthscan, London. ISBN-13: 978-1844070756, 368 pages Scheer H (2002) The solar economy. Earthscan, London. ISBN-13: 978-1844070756, 368 pages
7.
go back to reference Scheer H (2013) The solar economy: renewable energy for a sustainable global future. Taylor & Francis publisher Group, Routledge. ISBN-10: 1844070751 Scheer H (2013) The solar economy: renewable energy for a sustainable global future. Taylor & Francis publisher Group, Routledge. ISBN-10: 1844070751
8.
10.
go back to reference Williams R (1960) Becquerel photovoltaic effect in binary compounds. J Chem Phys 32:1505–1514CrossRef Williams R (1960) Becquerel photovoltaic effect in binary compounds. J Chem Phys 32:1505–1514CrossRef
11.
go back to reference Perlin J (1999) From space to earth: the story of solar electricity. Earthscan, New York Perlin J (1999) From space to earth: the story of solar electricity. Earthscan, New York
12.
go back to reference Hall R (1953) Segregation of impurities during the growth of germanium and silicon. J Phys Chem 57:836–839CrossRef Hall R (1953) Segregation of impurities during the growth of germanium and silicon. J Phys Chem 57:836–839CrossRef
13.
go back to reference Zhu L, Wang L, Pan C, Chen L, Xue F, Chen B, Yang L, Su L, Wang ZL (2017) Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect. ACS Nano 11:1894–1900CrossRef Zhu L, Wang L, Pan C, Chen L, Xue F, Chen B, Yang L, Su L, Wang ZL (2017) Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect. ACS Nano 11:1894–1900CrossRef
15.
go back to reference Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70CrossRef Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70CrossRef
16.
go back to reference Imalka Jayawardena KDG, Rozanski LJ, Mills CA, Beliatis MJ, Aamina Nismy N, Ravi S, Silva P (2013) ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5:8411CrossRef Imalka Jayawardena KDG, Rozanski LJ, Mills CA, Beliatis MJ, Aamina Nismy N, Ravi S, Silva P (2013) ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5:8411CrossRef
17.
go back to reference Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890CrossRef Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890CrossRef
18.
go back to reference Jayawardena KD, Rozanski LJ, Mills CA, Beliatis MJ, Nismy NA, Silva SR (2013) ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5:8411–8427CrossRef Jayawardena KD, Rozanski LJ, Mills CA, Beliatis MJ, Nismy NA, Silva SR (2013) ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5:8411–8427CrossRef
19.
go back to reference Conibeer G, Green M, Corkish R, Cho Y, Cho E-C, Jiang C-W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662CrossRef Conibeer G, Green M, Corkish R, Cho Y, Cho E-C, Jiang C-W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662CrossRef
20.
go back to reference Jang J, Lee JS, Hong K-H, Lee D-K, Song S, Kim K, Eo Y-J, Yun JH, Chung C-H (2017) Cu (In, Ga) Se 2 thin film solar cells with solution processed silver nanowire composite window layers: buffer/window junctions and their effects. Sol Energy Mater Sol Cells 170:60–67CrossRef Jang J, Lee JS, Hong K-H, Lee D-K, Song S, Kim K, Eo Y-J, Yun JH, Chung C-H (2017) Cu (In, Ga) Se 2 thin film solar cells with solution processed silver nanowire composite window layers: buffer/window junctions and their effects. Sol Energy Mater Sol Cells 170:60–67CrossRef
21.
go back to reference (a) Green MA (1982) Solar cells: operating principles, technology, and system applications. (b) Creative Commons Attribution 4.0 License, from Open Stax CNX, “An Introduction to Solar Technology” by Brittany L. Oliva-Chatelain and Andrew R. Barron, https://cnx.org/contents/3QU3ovtd@1/An-Introduction-to-Solar-Cell-. Figure adapted from P. J. Reddy, Science and Technology of Photovoltaics, 2nd edition, CRC Press, Leiden (2010) (a) Green MA (1982) Solar cells: operating principles, technology, and system applications. (b) Creative Commons Attribution 4.0 License, from Open Stax CNX, “An Introduction to Solar Technology” by Brittany L. Oliva-Chatelain and Andrew R. Barron, https://​cnx.​org/​contents/​3QU3ovtd@1/​An-Introduction-to-Solar-Cell-. Figure adapted from P. J. Reddy, Science and Technology of Photovoltaics, 2nd edition, CRC Press, Leiden (2010)
23.
go back to reference Siebentritt S (2017) Basics of chalcogenide thin film solar cells, photovoltaic solar energy: from fundamentals to applications, John Wiley & Sons, 169, ISBN: 111892746X, 9781118927465 Siebentritt S (2017) Basics of chalcogenide thin film solar cells, photovoltaic solar energy: from fundamentals to applications, John Wiley & Sons, 169, ISBN: 111892746X, 9781118927465
24.
go back to reference Choi KM, Kim D, Rungtaweevoranit B, Trickett CA, Barmanbek JTD, Alshammari AS, Yang P, Yaghi OM (2017) Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J Am Chem Soc 139:356–362CrossRef Choi KM, Kim D, Rungtaweevoranit B, Trickett CA, Barmanbek JTD, Alshammari AS, Yang P, Yaghi OM (2017) Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J Am Chem Soc 139:356–362CrossRef
26.
go back to reference (a) Wang J, Liu K, Ma L, Zhan X (2016) Triarylamine: versatile platform for organic, dye-sensitized, and perovskite solar cells. Chem Rev 116:14675−14725. (b) Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14 (a) Wang J, Liu K, Ma L, Zhan X (2016) Triarylamine: versatile platform for organic, dye-sensitized, and perovskite solar cells. Chem Rev 116:14675−14725. (b) Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14
28.
go back to reference Pagliaro M, Ciriminna R, Palmisano G (2008) Flexible solar cells. ChemSusChem 1:880–891CrossRef Pagliaro M, Ciriminna R, Palmisano G (2008) Flexible solar cells. ChemSusChem 1:880–891CrossRef
29.
go back to reference Shalan AE, Rashad MM, Yu Y, Lira-Cantú M, Abdel-Mottaleb MSA (2013) Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells. Electrochim Acta 89:469–478CrossRef Shalan AE, Rashad MM, Yu Y, Lira-Cantú M, Abdel-Mottaleb MSA (2013) Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells. Electrochim Acta 89:469–478CrossRef
31.
go back to reference Nagata S, Atkinson GM, Pestov D, Tepper GC, McLeskey JT (2011) Co-planar bi-metallic interdigitated electrode substrate for spin-coated organic solar cells. Sol Energy Mater Sol Cells 95:1594–1597CrossRef Nagata S, Atkinson GM, Pestov D, Tepper GC, McLeskey JT (2011) Co-planar bi-metallic interdigitated electrode substrate for spin-coated organic solar cells. Sol Energy Mater Sol Cells 95:1594–1597CrossRef
32.
go back to reference Umeyama T, Miyata T, Jakowetz AC, Shibata S, Kurotobi K, Higashino T, Koganezawa T, Tsujimoto M, Gélinas S, Matsuda W (2017) Regioisomer effects of [70] fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells. Chem Sci 8:181–188CrossRef Umeyama T, Miyata T, Jakowetz AC, Shibata S, Kurotobi K, Higashino T, Koganezawa T, Tsujimoto M, Gélinas S, Matsuda W (2017) Regioisomer effects of [70] fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells. Chem Sci 8:181–188CrossRef
33.
go back to reference (a) Sauvé G, Fernando R (2015) Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk heterojunction organic photovoltaics. J Phys Chem Lett 6:3770–3780. (b) Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Baker RH, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. (c) Xiaoqing J, Ze Y, Yuchen Z, Jianbo L, Jiajia L, Gagik GG, Xichuan Y & Licheng S (2017) Scientific Reports 7:42564 https://doi.org/10.1038/srep42564 (a) Sauvé G, Fernando R (2015) Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk heterojunction organic photovoltaics. J Phys Chem Lett 6:3770–3780. (b) Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Baker RH, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. (c) Xiaoqing J, Ze Y, Yuchen Z, Jianbo L, Jiajia L, Gagik GG, Xichuan Y & Licheng S (2017) Scientific Reports 7:42564 https://​doi.​org/​10.​1038/​srep42564
34.
go back to reference (a) Pedro VG, Perez EJJ, Arsyad W-S, Barea EM, Santiago FF, Sero IM, Bisquert J (2014) General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett 14:888–893. (b) Shalan AE, Oshikiri T, Narra S, Elshanawany MM, Ueno K, Wu H-P, Nakamura K, Shi X, Diau EW-G, Misawa H (2016) Cobalt oxide (CoOx) as an efficient hole-extracting layer for high-performance inverted planar perovskite solar cells. ACS Appl Mater Interfaces 8:33592–33600 (a) Pedro VG, Perez EJJ, Arsyad W-S, Barea EM, Santiago FF, Sero IM, Bisquert J (2014) General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett 14:888–893. (b) Shalan AE, Oshikiri T, Narra S, Elshanawany MM, Ueno K, Wu H-P, Nakamura K, Shi X, Diau EW-G, Misawa H (2016) Cobalt oxide (CoOx) as an efficient hole-extracting layer for high-performance inverted planar perovskite solar cells. ACS Appl Mater Interfaces 8:33592–33600
35.
go back to reference Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805CrossRef Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805CrossRef
36.
go back to reference Segets D, Matthew Lucas J, Taylor RNK, Scheele M, Zheng H, Paul Alivisatos A, Peukert W (2012) Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. ACS Nano 6:9021–9032CrossRef Segets D, Matthew Lucas J, Taylor RNK, Scheele M, Zheng H, Paul Alivisatos A, Peukert W (2012) Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. ACS Nano 6:9021–9032CrossRef
37.
go back to reference Shalan AE, Rashad MM, Youhai Y, Lira-Cantú M, Abdel-Mottaleb MSA (2013) A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells. Appl Phys A 110:111–122CrossRef Shalan AE, Rashad MM, Youhai Y, Lira-Cantú M, Abdel-Mottaleb MSA (2013) A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells. Appl Phys A 110:111–122CrossRef
38.
go back to reference Feng X (2015) Science, nanocarbons for advanced energy conversion. https://books.google.com.eg/books?isbn=3527336664 Feng X (2015) Science, nanocarbons for advanced energy conversion. https://​books.​google.​com.​eg/​books?​isbn=​3527336664
39.
go back to reference Shalan AE, Oshikiri T, Sawayanagi H, Nakamura K, Ueno K, Sun Q, Hui-Ping W, Diau EW-G, Misawa H (2017) Versatile plasmonic-effects at the interface of inverted perovskite solar cells. Nanoscale 9:1229–1236CrossRef Shalan AE, Oshikiri T, Sawayanagi H, Nakamura K, Ueno K, Sun Q, Hui-Ping W, Diau EW-G, Misawa H (2017) Versatile plasmonic-effects at the interface of inverted perovskite solar cells. Nanoscale 9:1229–1236CrossRef
40.
go back to reference Yang L, Leung WWF (2013) Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv Mater 25:1792–1795CrossRef Yang L, Leung WWF (2013) Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv Mater 25:1792–1795CrossRef
41.
go back to reference Wang Q, Xie Y, Soltani-Kordshuli F, Eslamian M (2016) Progress in emerging solution-processed thin film solar cells – part I: polymer solar cells. Renew Sust Energ Rev 56:347–361CrossRef Wang Q, Xie Y, Soltani-Kordshuli F, Eslamian M (2016) Progress in emerging solution-processed thin film solar cells – part I: polymer solar cells. Renew Sust Energ Rev 56:347–361CrossRef
42.
go back to reference Kovalenko A, Michal Hrabal M (2017) Printable Solar Cells. In Advances in Solar Cell Materials and Storage. Scrivener Publishing 163–202. ISBN: 9781119283713 Kovalenko A, Michal Hrabal M (2017) Printable Solar Cells. In Advances in Solar Cell Materials and Storage. Scrivener Publishing 163–202. ISBN: 9781119283713
44.
go back to reference Nasybulin E, Wei S, Cox M, Kymissis I, Levon K (2011) Morphological and spectroscopic studies of electrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) hole extraction layer for organic photovoltaic device (OPVd) fabrication. J Phys Chem C 115:4307–4314CrossRef Nasybulin E, Wei S, Cox M, Kymissis I, Levon K (2011) Morphological and spectroscopic studies of electrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) hole extraction layer for organic photovoltaic device (OPVd) fabrication. J Phys Chem C 115:4307–4314CrossRef
45.
go back to reference Chen J-Y, Chiu Y-C, Shih C-C, Wu W-C, Chen W-C (2015) Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells. J Mater Chem A 3:15039–15048CrossRef Chen J-Y, Chiu Y-C, Shih C-C, Wu W-C, Chen W-C (2015) Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells. J Mater Chem A 3:15039–15048CrossRef
46.
go back to reference (a) Tang Q, Cai H, Yuan S, Wang X (2013) Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J Mater Chem A 1:317–323. (b) Chen X, Tang Q, He B (2014) Efficient dye-sensitized solar cell from spiny polyaniline nanofiber counter electrode. Mater Lett 119:28–31 (a) Tang Q, Cai H, Yuan S, Wang X (2013) Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J Mater Chem A 1:317–323. (b) Chen X, Tang Q, He B (2014) Efficient dye-sensitized solar cell from spiny polyaniline nanofiber counter electrode. Mater Lett 119:28–31
47.
go back to reference Lee TH, Do K, Lee YW, Jeon SS, Kim C, Ko J, Im SS (2012) High-performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode. J Mater Chem 22:21624–21629CrossRef Lee TH, Do K, Lee YW, Jeon SS, Kim C, Ko J, Im SS (2012) High-performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode. J Mater Chem 22:21624–21629CrossRef
48.
go back to reference Kurniawan M, Salim T, Tai KF, Sun S, Sie EJ, Wu X, Yeow EKL, Huan CHA, Lam YM, Sum TC (2012) Carrier dynamics in polymer nanofiber:fullerene solar cells. J Phys Chem C 116:18015–18022CrossRef Kurniawan M, Salim T, Tai KF, Sun S, Sie EJ, Wu X, Yeow EKL, Huan CHA, Lam YM, Sum TC (2012) Carrier dynamics in polymer nanofiber:fullerene solar cells. J Phys Chem C 116:18015–18022CrossRef
49.
go back to reference Kim M, Jo SB, Park JH, Cho K (2015) Flexible lateral organic solar cells with core–shell structured organic nanofibers. Nano Energy 18:97–108CrossRef Kim M, Jo SB, Park JH, Cho K (2015) Flexible lateral organic solar cells with core–shell structured organic nanofibers. Nano Energy 18:97–108CrossRef
50.
go back to reference Yu G, Gao J, Hummelen J, Wudl F, Heeger A (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791CrossRef Yu G, Gao J, Hummelen J, Wudl F, Heeger A (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791CrossRef
51.
go back to reference Sundarrajan S, Murugan R, Nair AS, Ramakrishna S (2010) Fabrication of P3HT/PCBM solar cloth by electrospinning technique. Mater Lett 64:2369–2372CrossRef Sundarrajan S, Murugan R, Nair AS, Ramakrishna S (2010) Fabrication of P3HT/PCBM solar cloth by electrospinning technique. Mater Lett 64:2369–2372CrossRef
52.
go back to reference Solanki A, Wu B, Salim T, Yeow EKL, Lam YM, Sum TC (2014) Performance improvements in polymer nanofiber/fullerene solar cells with external electric field treatment. J Phys Chem C 118:11285–11291CrossRef Solanki A, Wu B, Salim T, Yeow EKL, Lam YM, Sum TC (2014) Performance improvements in polymer nanofiber/fullerene solar cells with external electric field treatment. J Phys Chem C 118:11285–11291CrossRef
53.
go back to reference Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai Y-W, Huang H, Goodenough JB (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283CrossRef Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai Y-W, Huang H, Goodenough JB (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283CrossRef
54.
go back to reference Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82CrossRef Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82CrossRef
55.
go back to reference Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480CrossRef Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480CrossRef
57.
go back to reference Aboagye A, Elbohy H, Kelkar AD, Qiao Q, Zai J, Qian X, Zhang L (2015) Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells. Nano Energy 11:550–556CrossRef Aboagye A, Elbohy H, Kelkar AD, Qiao Q, Zai J, Qian X, Zhang L (2015) Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells. Nano Energy 11:550–556CrossRef
58.
go back to reference Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q (2010) Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 2:3572–3577CrossRef Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q (2010) Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 2:3572–3577CrossRef
59.
go back to reference Park SH, Jung HR, Lee WJ (2013) Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:423–428CrossRef Park SH, Jung HR, Lee WJ (2013) Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:423–428CrossRef
60.
go back to reference Park SH, Kim BK, Lee WJ (2013) Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources 239:122–127CrossRef Park SH, Kim BK, Lee WJ (2013) Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources 239:122–127CrossRef
61.
go back to reference Mohamed IMA, Motlak M, Akhtar MS, Yasin AS, El-Newehy MH, Al-Deyab SS, Barakat NAM (2016) Synthesis, characterization and performance as a counter electrode for dye-sensitized solar cells of CoCr-decorated carbon nanofibers. Ceram Int 42:146–153CrossRef Mohamed IMA, Motlak M, Akhtar MS, Yasin AS, El-Newehy MH, Al-Deyab SS, Barakat NAM (2016) Synthesis, characterization and performance as a counter electrode for dye-sensitized solar cells of CoCr-decorated carbon nanofibers. Ceram Int 42:146–153CrossRef
62.
go back to reference Motlak M, Barakat NAM, Akhtar MS, Hamza AM, Kim BS, Kim CS, Khalil KA, Almajid AA (2015) High performance of NiCo nanoparticles-doped carbon nanofibers as counter electrode for dye-sensitized solar cells. Electrochim Acta 160:1–6CrossRef Motlak M, Barakat NAM, Akhtar MS, Hamza AM, Kim BS, Kim CS, Khalil KA, Almajid AA (2015) High performance of NiCo nanoparticles-doped carbon nanofibers as counter electrode for dye-sensitized solar cells. Electrochim Acta 160:1–6CrossRef
63.
go back to reference Barakat NAM, Shaheer Akhtar M, Yousef A, El-Newehy M, Kim HY (2012) Pd-Co-doped carbon nanofibers with photoactivity as effective counter electrodes for DSSCs. Chem Eng J 211–212:9–15CrossRef Barakat NAM, Shaheer Akhtar M, Yousef A, El-Newehy M, Kim HY (2012) Pd-Co-doped carbon nanofibers with photoactivity as effective counter electrodes for DSSCs. Chem Eng J 211–212:9–15CrossRef
64.
go back to reference Yousef A, Akhtar MS, Barakat NAM, Motlak M, Yang OB, Kim HY (2013) Effective NiCu NPs-doped carbon nanofibers as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:142–148CrossRef Yousef A, Akhtar MS, Barakat NAM, Motlak M, Yang OB, Kim HY (2013) Effective NiCu NPs-doped carbon nanofibers as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:142–148CrossRef
65.
go back to reference Saranya K, Subramania A, Sivasankar N (2015) Influence of earth-abundant bimetallic (Fe–Ni) nanoparticle-embedded CNFs as a low-cost counter electrode material for dye-sensitized solar cells. RSC Adv 5:43611–43619CrossRef Saranya K, Subramania A, Sivasankar N (2015) Influence of earth-abundant bimetallic (Fe–Ni) nanoparticle-embedded CNFs as a low-cost counter electrode material for dye-sensitized solar cells. RSC Adv 5:43611–43619CrossRef
66.
go back to reference Jeong I, Lee J, Vincent Joseph KL, Lee HI, Kim JK, Yoon S, Lee J (2014) Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. Nano Energy 9:392–400CrossRef Jeong I, Lee J, Vincent Joseph KL, Lee HI, Kim JK, Yoon S, Lee J (2014) Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. Nano Energy 9:392–400CrossRef
67.
go back to reference Zhang S, Ji C, Bian Z, Yu P, Zhang L, Liu D, Shi E, Shang Y, Peng H, Cheng Q (2012) Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 6:7191–7198CrossRef Zhang S, Ji C, Bian Z, Yu P, Zhang L, Liu D, Shi E, Shang Y, Peng H, Cheng Q (2012) Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 6:7191–7198CrossRef
68.
go back to reference Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three‐dimensional heteroatom‐doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111CrossRef Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three‐dimensional heteroatom‐doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111CrossRef
69.
go back to reference Wang G, Xing W, Zhuo S (2009) Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J Power Sources 194:568–573CrossRef Wang G, Xing W, Zhuo S (2009) Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J Power Sources 194:568–573CrossRef
70.
go back to reference Trung HN, Baik SJ, Jun Y, Lee M, Chung OH, Park JS (2014) Electrospun coaxial titanium dioxide/carbon nanofibers for use in anodes of dye-sensitized solar cells. Electrochim Acta 142:144–151CrossRef Trung HN, Baik SJ, Jun Y, Lee M, Chung OH, Park JS (2014) Electrospun coaxial titanium dioxide/carbon nanofibers for use in anodes of dye-sensitized solar cells. Electrochim Acta 142:144–151CrossRef
71.
go back to reference Kim GH, Park SH, Birajdar MS, Lee J, Hong SC (2017) Core/shell structured carbon nanofiber/platinum nanoparticle hybrid web as a counter electrode for dye-sensitized solar cell. J Ind Eng Chem 52:211–217CrossRef Kim GH, Park SH, Birajdar MS, Lee J, Hong SC (2017) Core/shell structured carbon nanofiber/platinum nanoparticle hybrid web as a counter electrode for dye-sensitized solar cell. J Ind Eng Chem 52:211–217CrossRef
72.
go back to reference Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Structural and optical properties of electrospun TiO2 nanofibers. Chem Mater 19:6536–6542CrossRef Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Structural and optical properties of electrospun TiO2 nanofibers. Chem Mater 19:6536–6542CrossRef
73.
go back to reference Song MY, Kim DK, Jo SM, Kim DY (2005) Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth Met 155:635–638CrossRef Song MY, Kim DK, Jo SM, Kim DY (2005) Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth Met 155:635–638CrossRef
74.
go back to reference Lee BH, Song MY, Jang S-Y, Jo SM, Kwak S-Y, Kim DY (2009) Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes. J Phys Chem C 113:21453–21457CrossRef Lee BH, Song MY, Jang S-Y, Jo SM, Kwak S-Y, Kim DY (2009) Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes. J Phys Chem C 113:21453–21457CrossRef
75.
go back to reference Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Ohno S, Yoshikawa M, Shiratori S (2006) Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology 17:1026CrossRef Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Ohno S, Yoshikawa M, Shiratori S (2006) Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology 17:1026CrossRef
76.
go back to reference Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2005) New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synth Met 153:77–80CrossRef Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2005) New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synth Met 153:77–80CrossRef
77.
go back to reference Hwang D, Kim DY, Jang S-Y, Kim D (2013) Superior photoelectrodes for solid-state dye-sensitized solar cells using amphiphilic TiO2. J Mater Chem A 1:1228–1238CrossRef Hwang D, Kim DY, Jang S-Y, Kim D (2013) Superior photoelectrodes for solid-state dye-sensitized solar cells using amphiphilic TiO2. J Mater Chem A 1:1228–1238CrossRef
78.
go back to reference Kavan L (2012) Electrochemistry of titanium dioxide: some aspects and highlights. Chem Rec 12:131–142CrossRef Kavan L (2012) Electrochemistry of titanium dioxide: some aspects and highlights. Chem Rec 12:131–142CrossRef
79.
go back to reference Bisquert J, Fabregat-Santiago F (2010) Dye-sensitized solar cells. In: Kalyanasundaram K (ed). CRC Press, Boca Raton, Talyor & Francis group, 320 Pages ISBN 9781439808665 - CAT# N10076 Bisquert J, Fabregat-Santiago F (2010) Dye-sensitized solar cells. In: Kalyanasundaram K (ed). CRC Press, Boca Raton, Talyor & Francis group, 320 Pages ISBN 9781439808665 - CAT# N10076
80.
go back to reference Nair AS, Peining Z, Babu VJ, Shengyuan Y, Ramakrishna S (2011) Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. PCCP 13:21248–21261CrossRef Nair AS, Peining Z, Babu VJ, Shengyuan Y, Ramakrishna S (2011) Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. PCCP 13:21248–21261CrossRef
81.
go back to reference Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459CrossRef Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459CrossRef
82.
go back to reference Mohamed IMA, Dao VD, Yasin AS, Mousa HM, Mohamed HO, Choi HS, Hassan MK, Barakat NAM (2016) Nitrogen-doped&SnO2-incoportaed TiO2 nanofibers as novel and effective photoanode for enhanced efficiency dye-sensitized solar cells. Chem Eng J 304:48–60CrossRef Mohamed IMA, Dao VD, Yasin AS, Mousa HM, Mohamed HO, Choi HS, Hassan MK, Barakat NAM (2016) Nitrogen-doped&SnO2-incoportaed TiO2 nanofibers as novel and effective photoanode for enhanced efficiency dye-sensitized solar cells. Chem Eng J 304:48–60CrossRef
83.
go back to reference Mingzheng G, Chunyan C, Jianying H, Shuhui L, Zhong C, Ke-Qin Z, Al-Deyabd SS, Yuekun L (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications, J Mater Chem A 4:6772–6801 Mingzheng G, Chunyan C, Jianying H, Shuhui L, Zhong C, Ke-Qin Z, Al-Deyabd SS, Yuekun L (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications, J Mater Chem A 4:6772–6801
84.
go back to reference Krysova H, Zukal A, Trckova-Barakova J, Chandiran AK, Nazeeruddin MK, Grätzel M, Kavan L (2013) The application of electrospun titania nanofibers in dye-sensitized solar cells. Chimia Int J Chem 67:149–154CrossRef Krysova H, Zukal A, Trckova-Barakova J, Chandiran AK, Nazeeruddin MK, Grätzel M, Kavan L (2013) The application of electrospun titania nanofibers in dye-sensitized solar cells. Chimia Int J Chem 67:149–154CrossRef
85.
go back to reference (a) Zhou R, Guo W, Yu R, Pan C (2015) Highly flexible, conductive and catalytic Pt networks as transparent counter electrodes for wearable dye-sensitized solar cells. J Mater Chem A 3:23028–23034. (b) Sawanta SM, Chang SS, Hyungjin K, Pramod SP, Chang KH (2016) In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency Nanoscale 8:2664–2677 (a) Zhou R, Guo W, Yu R, Pan C (2015) Highly flexible, conductive and catalytic Pt networks as transparent counter electrodes for wearable dye-sensitized solar cells. J Mater Chem A 3:23028–23034. (b) Sawanta SM, Chang SS, Hyungjin K, Pramod SP, Chang KH (2016) In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency Nanoscale 8:2664–2677
86.
go back to reference Lo S, Liu Z, Li J, Chan HL, Yan F (2013) Hybrid solar cells based on poly (3-hexylthiophene) and electrospun TiO2 nanofibers modified with CdS nanoparticles. Prog Nat Sci Mat Int 23:514–518CrossRef Lo S, Liu Z, Li J, Chan HL, Yan F (2013) Hybrid solar cells based on poly (3-hexylthiophene) and electrospun TiO2 nanofibers modified with CdS nanoparticles. Prog Nat Sci Mat Int 23:514–518CrossRef
87.
go back to reference Dharani S, Mulmudi HK, Yantara N, Trang PTT, Park NG, Graetzel M, Mhaisalkar S, Mathews N, Boix PP (2014) High efficiency electrospun TiO2 nanofiber based hybrid organic–inorganic perovskite solar cell. Nanoscale 6:1675–1679CrossRef Dharani S, Mulmudi HK, Yantara N, Trang PTT, Park NG, Graetzel M, Mhaisalkar S, Mathews N, Boix PP (2014) High efficiency electrospun TiO2 nanofiber based hybrid organic–inorganic perovskite solar cell. Nanoscale 6:1675–1679CrossRef
88.
go back to reference Wu S, Tai Q, Yan F (2010) Hybrid photovoltaic devices based on poly (3-hexylthiophene) and ordered electrospun ZnO nanofibers. J Phys Chem C 114(2010):1932–7447 Wu S, Tai Q, Yan F (2010) Hybrid photovoltaic devices based on poly (3-hexylthiophene) and ordered electrospun ZnO nanofibers. J Phys Chem C 114(2010):1932–7447
89.
go back to reference Mali SS, Shim CS, Kim H, Patil PS, Hong CK (2016) In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8:2664–2677CrossRef Mali SS, Shim CS, Kim H, Patil PS, Hong CK (2016) In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8:2664–2677CrossRef
90.
go back to reference Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948CrossRef Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948CrossRef
91.
go back to reference Neubauer E, Kitzmantel M, Hulman M, Angerer P (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70:2228–2236CrossRef Neubauer E, Kitzmantel M, Hulman M, Angerer P (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70:2228–2236CrossRef
Metadata
Title
Nanofibers as Promising Materials for New Generations of Solar Cells
Authors
Ahmed Esmail Shalan
Ahmed Barhoum
Ahmed Mourtada Elseman
Mohamed Mohamed Rashad
Mónica Lira-Cantú
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_51

Premium Partners