Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Nanofluids: Definition & Classification

Authors : Aditya Kumar, Sudhakar Subudhi

Published in: Thermal Characteristics and Convection in Nanofluids

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The need of advanced heat transfer fluid leads to develop nanofluids. Nanofluids are the conventional heat transfer fluids containing solid nanoparticles. The chapter deals with basic introduction of nanofluids, development history of nanofluids and different classifications of nanofluids. Different conventional fluids have been used as the working fluid to transfer the heat in various processes. As a working fluid, water is used extensively due to its immense availability, but not considered as an efficient heat carrier due to low thermal conductivity. The alternates of water, like engine oil, ethylene glycol, etc., are also applied to the various applications, but higher viscosity and toxic nature have restricted the employability of these substitutes in the heat transfer processes. Thus, water has remained the only accessible option as working fluids. However, during the last few decades, it is observed by the researchers that these conventional working fluids have low thermophysical properties which confine the convection heat transfer rate. Hence, by improving the thermophysical properties of the working fluids, the heat transfer can be increased. Nanofluids could be a new dawn to the highly efficient heat flow technologies

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Maxwell, J. C. (1873). A treatise on electricity and magnetism (vol. 1). Clarendon press. Maxwell, J. C. (1873). A treatise on electricity and magnetism (vol. 1). Clarendon press.
2.
go back to reference Vand, V. (1948). Viscosity of solutions and suspensions. II. Experimental determination of the viscosity–concentration function of spherical suspensions. Journal of Physical Chemistry, 52, 300–314. Vand, V. (1948). Viscosity of solutions and suspensions. II. Experimental determination of the viscosity–concentration function of spherical suspensions. Journal of Physical Chemistry, 52, 300–314.
3.
go back to reference Robinson, J. V. (1949). The Viscosity of Suspensions of Spheres. Journal of Physical Colloid Chemistry, 53, 1042–1056.CrossRef Robinson, J. V. (1949). The Viscosity of Suspensions of Spheres. Journal of Physical Colloid Chemistry, 53, 1042–1056.CrossRef
4.
go back to reference Leal, L. G. (1973). On the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet number. Chemical Engineering Communications, 1, 21–31.CrossRef Leal, L. G. (1973). On the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet number. Chemical Engineering Communications, 1, 21–31.CrossRef
5.
go back to reference Chung, Y. C., & Leal, L. G. (1982). An experimental study of the effective thermal conductivity of a sheared suspension of rigid spheres. International Journal of Multiphase Flow, 8, 605–625.CrossRef Chung, Y. C., & Leal, L. G. (1982). An experimental study of the effective thermal conductivity of a sheared suspension of rigid spheres. International Journal of Multiphase Flow, 8, 605–625.CrossRef
6.
go back to reference Kianjah, H., & Dhir, V. K. (1989). Experimental and analytical investigation of dispersed flow heat transfer. Experimental Thermal and Fluid Science, 2, 410–424.CrossRef Kianjah, H., & Dhir, V. K. (1989). Experimental and analytical investigation of dispersed flow heat transfer. Experimental Thermal and Fluid Science, 2, 410–424.CrossRef
7.
go back to reference Özbelge, T. A., & Somer, T. G. (1988). Hydrodynamic and heat transfer characteristics of liquid—solid suspensions in horizontal turbulent pipe flow. Chemical Engineering Journal, 38, 111–122.CrossRef Özbelge, T. A., & Somer, T. G. (1988). Hydrodynamic and heat transfer characteristics of liquid—solid suspensions in horizontal turbulent pipe flow. Chemical Engineering Journal, 38, 111–122.CrossRef
8.
go back to reference Murray, D. B. (1994). Local enhancement of heat transfer in a particulate cross flow—II experimental data and predicted trends. International Journal of Multiphase Flow, 20, 505–513.MATHCrossRef Murray, D. B. (1994). Local enhancement of heat transfer in a particulate cross flow—II experimental data and predicted trends. International Journal of Multiphase Flow, 20, 505–513.MATHCrossRef
9.
go back to reference Booth, F. (1950). The electroviscous effect for suspensions of solid spherical particles. Proceedings of the Royal Society London A Mathematical and Physical Sciences, 203, 533–551.MathSciNetMATHCrossRef Booth, F. (1950). The electroviscous effect for suspensions of solid spherical particles. Proceedings of the Royal Society London A Mathematical and Physical Sciences, 203, 533–551.MathSciNetMATHCrossRef
10.
go back to reference Frankel, N. A., & Acrivos, A. (1967). On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22, 847–853.CrossRef Frankel, N. A., & Acrivos, A. (1967). On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22, 847–853.CrossRef
11.
go back to reference Nir, A., & Acrivos, A. (1974). Experiments on the effective viscosity of concentrated suspensions of solid spheres. International Journal of Multiphase Flow, 1, 373–381.CrossRef Nir, A., & Acrivos, A. (1974). Experiments on the effective viscosity of concentrated suspensions of solid spheres. International Journal of Multiphase Flow, 1, 373–381.CrossRef
12.
go back to reference Van Kao, S., Nielsen, L. E. & Hill, C. T. (1975). Rheology of concentrated suspensions of spheres. I. Effect of the liquid—solid interface. Journal of Colloid and Interface Science, 53, 358–366. Van Kao, S., Nielsen, L. E. & Hill, C. T. (1975). Rheology of concentrated suspensions of spheres. I. Effect of the liquid—solid interface. Journal of Colloid and Interface Science, 53, 358–366.
13.
go back to reference Choi, S. U. S. & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. Choi, S. U. S. & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles.
14.
go back to reference Chopkar, M., Das, P. K., & Manna, I. (2006). Synthesis and characterization of nanofluid for advanced heat transfer applications. Scripta Materialia, 55, 549–552.CrossRef Chopkar, M., Das, P. K., & Manna, I. (2006). Synthesis and characterization of nanofluid for advanced heat transfer applications. Scripta Materialia, 55, 549–552.CrossRef
15.
go back to reference Paul, G., Chopkar, M., Manna, I., & Das, P. K. (2010). Techniques for measuring the thermal conductivity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 14, 1913–1924.CrossRef Paul, G., Chopkar, M., Manna, I., & Das, P. K. (2010). Techniques for measuring the thermal conductivity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 14, 1913–1924.CrossRef
16.
go back to reference He, Y., et al. (2007). Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, 50, 2272–2281.MATHCrossRef He, Y., et al. (2007). Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, 50, 2272–2281.MATHCrossRef
17.
go back to reference Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87, 153107.CrossRef Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87, 153107.CrossRef
18.
go back to reference Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79, 2252–2254.CrossRef Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79, 2252–2254.CrossRef
19.
go back to reference Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718–720.CrossRef Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718–720.CrossRef
20.
go back to reference Vakili, M., Mohebbi, A., & Hashemipour, H. (2013). Experimental study on convective heat transfer of TiO2 nanofluids. Heat and Mass Transfer, 49, 1159–1165.CrossRef Vakili, M., Mohebbi, A., & Hashemipour, H. (2013). Experimental study on convective heat transfer of TiO2 nanofluids. Heat and Mass Transfer, 49, 1159–1165.CrossRef
21.
go back to reference Hwang, K. S., Jang, S. P., & Choi, S. U. S. (2009). Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer, 52, 193–199.MATHCrossRef Hwang, K. S., Jang, S. P., & Choi, S. U. S. (2009). Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer, 52, 193–199.MATHCrossRef
22.
go back to reference Li, C. H., & Peterson, G. P. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99, 84314.CrossRef Li, C. H., & Peterson, G. P. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99, 84314.CrossRef
23.
go back to reference Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125, 567–574.CrossRef Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125, 567–574.CrossRef
24.
go back to reference Sen Gupta, S., et al. (2011). Thermal conductivity enhancement of nanofluids containing graphene nanosheets. Journal of Applied Physics, 110, 84302.CrossRef Sen Gupta, S., et al. (2011). Thermal conductivity enhancement of nanofluids containing graphene nanosheets. Journal of Applied Physics, 110, 84302.CrossRef
25.
go back to reference Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45, 855–863.MATHCrossRef Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45, 855–863.MATHCrossRef
26.
go back to reference Zhu, H., Zhang, C., Liu, S., Tang, Y. & Yin, Y. (2006). Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. 023123, 4–7. Zhu, H., Zhang, C., Liu, S., Tang, Y. & Yin, Y. (2006). Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. 023123, 4–7.
27.
go back to reference Xie, H., et al. (2002). Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91, 4568–4572.CrossRef Xie, H., et al. (2002). Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91, 4568–4572.CrossRef
28.
go back to reference Lee, D., Kim, J.-W., & Kim, B. G. (2006). A new parameter to control heat transport in nanofluids: Surface Charge state of the particle in suspension. Journal of Physical Chemistry B, 110, 4323–4328.CrossRef Lee, D., Kim, J.-W., & Kim, B. G. (2006). A new parameter to control heat transport in nanofluids: Surface Charge state of the particle in suspension. Journal of Physical Chemistry B, 110, 4323–4328.CrossRef
29.
go back to reference Nguyen, C. T., et al. (2008). Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable? International Journal of Thermal Sciences, 47, 103–111.CrossRef Nguyen, C. T., et al. (2008). Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable? International Journal of Thermal Sciences, 47, 103–111.CrossRef
30.
go back to reference Hammami, Y. El, Hattab, M. El, Mir, R. & Mediouni, T. (2015). Numerical study of natural convection of nanofluid in a square enclosure in the presence of the magnetic field. 230–239. Hammami, Y. El, Hattab, M. El, Mir, R. & Mediouni, T. (2015). Numerical study of natural convection of nanofluid in a square enclosure in the presence of the magnetic field. 230–239.
31.
go back to reference Nabati Shoghl, S., Jamali, J. & Keshavarz Moraveji, M. (2016). Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Experimental Thermal and Fluid Science, 74, 339–346. Nabati Shoghl, S., Jamali, J. & Keshavarz Moraveji, M. (2016). Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Experimental Thermal and Fluid Science, 74, 339–346.
32.
go back to reference Byrne, M. D., Hart, R. A., & Da Silva, A. K. (2012). Experimental thermal-hydraulic evaluation of CuO nanofluids in microchannels at various concentrations with and without suspension enhancers. International Journal of Heat and Mass Transfer, 55, 2684–2691.CrossRef Byrne, M. D., Hart, R. A., & Da Silva, A. K. (2012). Experimental thermal-hydraulic evaluation of CuO nanofluids in microchannels at various concentrations with and without suspension enhancers. International Journal of Heat and Mass Transfer, 55, 2684–2691.CrossRef
33.
go back to reference Meibodi, M. E., et al. (2010). An estimation for velocity and temperature profiles of nanofluids in fully developed turbulent flow conditions. International Communications in Heat and Mass Transfer, 37, 895–900.CrossRef Meibodi, M. E., et al. (2010). An estimation for velocity and temperature profiles of nanofluids in fully developed turbulent flow conditions. International Communications in Heat and Mass Transfer, 37, 895–900.CrossRef
34.
go back to reference Kumar, A. & Subudhi, S. (2018). Preparation, characteristics, convection and applications of magnetic nanofluids: A review. Heat and Mass Transfer und Stoffuebertragung, 54. Kumar, A. & Subudhi, S. (2018). Preparation, characteristics, convection and applications of magnetic nanofluids: A review. Heat and Mass Transfer und Stoffuebertragung, 54.
35.
go back to reference Raj, P., & Subudhi, S. (2018). A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renewable and Sustainable Energy Reviews, 84, 54–74.CrossRef Raj, P., & Subudhi, S. (2018). A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renewable and Sustainable Energy Reviews, 84, 54–74.CrossRef
36.
go back to reference Rashidi, M., Kalantariasl, A., Saboori, R., Haghani, A., & Keshavarz, A. (2021). Performance of environmental friendly water-based calcium carbonate nanofluid as enhanced recovery agent for sandstone oil reservoirs. Journal of Petroleum Science and Engineering, 196, 107644.CrossRef Rashidi, M., Kalantariasl, A., Saboori, R., Haghani, A., & Keshavarz, A. (2021). Performance of environmental friendly water-based calcium carbonate nanofluid as enhanced recovery agent for sandstone oil reservoirs. Journal of Petroleum Science and Engineering, 196, 107644.CrossRef
37.
go back to reference Mukherjee, S., Jana, S., Chandra Mishra, P., Chaudhuri, P., & Chakrabarty, S. (2021). Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube. International Journal of Thermal Sciences, 159, 106581.CrossRef Mukherjee, S., Jana, S., Chandra Mishra, P., Chaudhuri, P., & Chakrabarty, S. (2021). Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube. International Journal of Thermal Sciences, 159, 106581.CrossRef
38.
go back to reference Mahmoudpour, M., & Pourafshary, P. (2021). Investigation of the effect of engineered water/nanofluid hybrid injection on enhanced oil recovery mechanisms in carbonate reservoirs. Journal of Petroleum Science and Engineering, 196, 107662.CrossRef Mahmoudpour, M., & Pourafshary, P. (2021). Investigation of the effect of engineered water/nanofluid hybrid injection on enhanced oil recovery mechanisms in carbonate reservoirs. Journal of Petroleum Science and Engineering, 196, 107662.CrossRef
39.
go back to reference Naghdbishi, A., Yazdi, M. E., & Akbari, G. (2020). Experimental investigation of the effect of multi-wall carbon nanotube—Water/glycol based nanofluids on a PVT system integrated with PCM-covered collector. Applied Thermal Engineering, 178, 115556.CrossRef Naghdbishi, A., Yazdi, M. E., & Akbari, G. (2020). Experimental investigation of the effect of multi-wall carbon nanotube—Water/glycol based nanofluids on a PVT system integrated with PCM-covered collector. Applied Thermal Engineering, 178, 115556.CrossRef
40.
go back to reference Ahmed, W., et al. (2020). Effect of ZnO-water based nanofluids from sonochemical synthesis method on heat transfer in a circular flow passage. International Communications in Heat and Mass Transfer, 114, 104591.CrossRef Ahmed, W., et al. (2020). Effect of ZnO-water based nanofluids from sonochemical synthesis method on heat transfer in a circular flow passage. International Communications in Heat and Mass Transfer, 114, 104591.CrossRef
41.
go back to reference Naveenkumar, R., Ramesh Kumar, S., Giridharan, R. & Senthil Kumaran, S. (2020). Thermal Performance Enhancement in a Plain Tube fitted with perforated twisted tape insert using water based Al2O3 Nanofluid. Materials Today: Proceedings, 22, 2274–2282. Naveenkumar, R., Ramesh Kumar, S., Giridharan, R. & Senthil Kumaran, S. (2020). Thermal Performance Enhancement in a Plain Tube fitted with perforated twisted tape insert using water based Al2O3 Nanofluid. Materials Today: Proceedings, 22, 2274–2282.
42.
go back to reference Aleem, M., Asjad, M. I., Shaheen, A., & Khan, I. (2020). MHD Influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and newtonian heating. Chaos, Solitons & Fractals, 130, 109437.MathSciNetCrossRef Aleem, M., Asjad, M. I., Shaheen, A., & Khan, I. (2020). MHD Influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and newtonian heating. Chaos, Solitons & Fractals, 130, 109437.MathSciNetCrossRef
43.
go back to reference Azimikivi, H., Purmahmud, N. & Mirzaee, I. (2020). Rib shape and nanoparticle diameter effects on natural convection heat transfer at low turbulence two-phase flow of Al2O3-Water nanofluid inside a square cavity: Based on Buongiorno’s two-phase model. Thermal Science and Engineering Progress, 100587. https://doi.org/10.1016/j.tsep.2020.100587. Azimikivi, H., Purmahmud, N. & Mirzaee, I. (2020). Rib shape and nanoparticle diameter effects on natural convection heat transfer at low turbulence two-phase flow of Al2O3-Water nanofluid inside a square cavity: Based on Buongiorno’s two-phase model. Thermal Science and Engineering Progress, 100587. https://​doi.​org/​10.​1016/​j.​tsep.​2020.​100587.
44.
go back to reference Alshayji, A., Asadi, A., & Alarifi, I. M. (2020). On the heat transfer effectiveness and pumping power assessment of a diamond-water nanofluid based on thermophysical properties: An experimental study. Powder Technology, 373, 397–410.CrossRef Alshayji, A., Asadi, A., & Alarifi, I. M. (2020). On the heat transfer effectiveness and pumping power assessment of a diamond-water nanofluid based on thermophysical properties: An experimental study. Powder Technology, 373, 397–410.CrossRef
46.
go back to reference Sharma, P., Kumar, V., Singh Sokhal, G., Dasaroju, G. & Kumar Bulasara, V. (2020). Numerical study on performance of flat tube with water based copper oxide nanofluids. Materials Today: Proceedings, 21, 1800–1808. Sharma, P., Kumar, V., Singh Sokhal, G., Dasaroju, G. & Kumar Bulasara, V. (2020). Numerical study on performance of flat tube with water based copper oxide nanofluids. Materials Today: Proceedings, 21, 1800–1808.
47.
go back to reference Hu, Y.-P., Li, Y.-R., Lu, L., Mao, Y.-J., & Li, M.-H. (2020). Natural convection of water-based nanofluids near the density maximum in an annulus. International Journal of Thermal Sciences, 152, 106309.CrossRef Hu, Y.-P., Li, Y.-R., Lu, L., Mao, Y.-J., & Li, M.-H. (2020). Natural convection of water-based nanofluids near the density maximum in an annulus. International Journal of Thermal Sciences, 152, 106309.CrossRef
48.
go back to reference Maaref, S., Kantzas, A., & Bryant, S. L. (2020). The effect of water alternating solvent based nanofluid flooding on heavy oil recovery in oil-wet porous media. Fuel, 282, 118808.CrossRef Maaref, S., Kantzas, A., & Bryant, S. L. (2020). The effect of water alternating solvent based nanofluid flooding on heavy oil recovery in oil-wet porous media. Fuel, 282, 118808.CrossRef
49.
go back to reference Arora, S., et al. (2020). Performance and cost analysis of photovoltaic thermal (PVT)-compound parabolic concentrator (CPC) collector integrated solar still using CNT-water based nanofluids. Desalination, 495, 114595.CrossRef Arora, S., et al. (2020). Performance and cost analysis of photovoltaic thermal (PVT)-compound parabolic concentrator (CPC) collector integrated solar still using CNT-water based nanofluids. Desalination, 495, 114595.CrossRef
51.
go back to reference Ansarpour, M., Danesh, E., & Mofarahi, M. (2020). Investigation the effect of various factors in a convective heat transfer performance by ionic liquid, ethylene glycol, and water as the base fluids for Al2O3 nanofluid in a horizontal tube: A numerical study. International Communications in Heat and Mass Transfer, 113, 104556.CrossRef Ansarpour, M., Danesh, E., & Mofarahi, M. (2020). Investigation the effect of various factors in a convective heat transfer performance by ionic liquid, ethylene glycol, and water as the base fluids for Al2O3 nanofluid in a horizontal tube: A numerical study. International Communications in Heat and Mass Transfer, 113, 104556.CrossRef
52.
go back to reference Gallego, A., Herrera, B., Buitrago-Sierra, R., Zapata, C., & Cacua, K. (2020). Influence of filling ratio on the thermal performance and efficiency of a thermosyphon operating with Al2O3-water based nanofluids. Nano-Structures & Nano-Objects, 22, 100448.CrossRef Gallego, A., Herrera, B., Buitrago-Sierra, R., Zapata, C., & Cacua, K. (2020). Influence of filling ratio on the thermal performance and efficiency of a thermosyphon operating with Al2O3-water based nanofluids. Nano-Structures & Nano-Objects, 22, 100448.CrossRef
53.
go back to reference Abdelrazik, A. S., et al. (2020). Optical, stability and energy performance of water-based MXene nanofluids in hybrid PV/thermal solar systems. Solar Energy, 204, 32–47.CrossRef Abdelrazik, A. S., et al. (2020). Optical, stability and energy performance of water-based MXene nanofluids in hybrid PV/thermal solar systems. Solar Energy, 204, 32–47.CrossRef
54.
go back to reference Gallego, A., et al. (2020). Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Advanced Powder Technology, 31, 560–570.CrossRef Gallego, A., et al. (2020). Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Advanced Powder Technology, 31, 560–570.CrossRef
55.
go back to reference Kumar, A. & Subudhi, S. (2019). Preparation, characterization and heat transfer analysis of nanofluids used for engine cooling. Applied Thermal Engineering, 160. Kumar, A. & Subudhi, S. (2019). Preparation, characterization and heat transfer analysis of nanofluids used for engine cooling. Applied Thermal Engineering, 160.
56.
go back to reference Paul, G., Pal, T., & Manna, I. (2010). Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique. Journal of Colloid and Interface Science, 349, 434–437.CrossRef Paul, G., Pal, T., & Manna, I. (2010). Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique. Journal of Colloid and Interface Science, 349, 434–437.CrossRef
57.
go back to reference Phuoc, T. X., Soong, Y., & Chyu, M. K. (2007). Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Optics and Lasers in Engineering, 45, 1099–1106.CrossRef Phuoc, T. X., Soong, Y., & Chyu, M. K. (2007). Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Optics and Lasers in Engineering, 45, 1099–1106.CrossRef
58.
go back to reference Margeat, O., Respaud, M., Amiens, C., Lecante, P., & Chaudret, B. (2010). Ultrafine metallic Fe nanoparticles: Synthesis, structure and magnetism. Beilstein Journal of Nanotechnology, 1, 108–118.CrossRef Margeat, O., Respaud, M., Amiens, C., Lecante, P., & Chaudret, B. (2010). Ultrafine metallic Fe nanoparticles: Synthesis, structure and magnetism. Beilstein Journal of Nanotechnology, 1, 108–118.CrossRef
59.
go back to reference Katiyar, A., Dhar, P., Nandi, T., & Das, S. K. (2016). Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids. Journal of Magnetism and Magnetic Materials, 419, 588–599.CrossRef Katiyar, A., Dhar, P., Nandi, T., & Das, S. K. (2016). Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids. Journal of Magnetism and Magnetic Materials, 419, 588–599.CrossRef
60.
go back to reference Karimi, A. S. Afghahi, S. S., Shariatmadar, H. & Ashjaee, M. (2014). Experimental investigation on thermal conductivity of MFe2O4 (M = Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochimica Acta, 598, 59–67. Karimi, A. S. Afghahi, S. S., Shariatmadar, H. & Ashjaee, M. (2014). Experimental investigation on thermal conductivity of MFe2O4 (M = Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochimica Acta, 598, 59–67.
61.
go back to reference Lee, S., Choi, S. U.-S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280–289.CrossRef Lee, S., Choi, S. U.-S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280–289.CrossRef
62.
go back to reference Liu, M., Zhou, M., Yang, H., Ren, G., & Zhao, Y. (2016). Titanium dioxide nanoparticles modified three dimensional ordered macroporous carbon for improved energy output in microbial fuel cells. Electrochimica Acta, 190, 463–470.CrossRef Liu, M., Zhou, M., Yang, H., Ren, G., & Zhao, Y. (2016). Titanium dioxide nanoparticles modified three dimensional ordered macroporous carbon for improved energy output in microbial fuel cells. Electrochimica Acta, 190, 463–470.CrossRef
63.
go back to reference Shen, L. P., Wang, H., Dong, M., Ma, Z. C. & Wang, H. B. (2012). Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid. Physics Letters, Section A: General, Atomic and Solid State, 376, 1053–1057. Shen, L. P., Wang, H., Dong, M., Ma, Z. C. & Wang, H. B. (2012). Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid. Physics Letters, Section A: General, Atomic and Solid State, 376, 1053–1057.
64.
go back to reference Su, F., Ma, X., & Lan, Z. (2011). The effect of carbon nanotubes on the physical properties of a binary nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 42, 252–257.CrossRef Su, F., Ma, X., & Lan, Z. (2011). The effect of carbon nanotubes on the physical properties of a binary nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 42, 252–257.CrossRef
65.
go back to reference Yang, L., Xu, J., Du, K., & Zhang, X. (2017). Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technology, 317, 348–369.CrossRef Yang, L., Xu, J., Du, K., & Zhang, X. (2017). Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technology, 317, 348–369.CrossRef
66.
go back to reference Sharma, T., Mohana Reddy, A. L., Chandra, T. S. & Ramaprabhu, S. (2008). Development of carbon nanotubes and nanofluids based microbial fuel cell. International Journal of Hydrogen Energy, 33, 6749–6754. Sharma, T., Mohana Reddy, A. L., Chandra, T. S. & Ramaprabhu, S. (2008). Development of carbon nanotubes and nanofluids based microbial fuel cell. International Journal of Hydrogen Energy, 33, 6749–6754.
67.
go back to reference Żyła, G., Vallejo, J. P., Fal, J., & Lugo, L. (2018). Nanodiamonds—Ethylene Glycol nanofluids: Experimental investigation of fundamental physical properties. International Journal of Heat and Mass Transfer, 121, 1201–1213.CrossRef Żyła, G., Vallejo, J. P., Fal, J., & Lugo, L. (2018). Nanodiamonds—Ethylene Glycol nanofluids: Experimental investigation of fundamental physical properties. International Journal of Heat and Mass Transfer, 121, 1201–1213.CrossRef
68.
go back to reference Bandarra Filho, E. P., Mendoza, O. S. H., Beicker, C. L. L., Menezes, A. & Wen, D. (2014). Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Conversion and Management, 84, 261–267. Bandarra Filho, E. P., Mendoza, O. S. H., Beicker, C. L. L., Menezes, A. & Wen, D. (2014). Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Conversion and Management, 84, 261–267.
69.
go back to reference Lamas, B., Abreu, B., Fonseca, A., Martins, N., & Oliveira, M. (2012). Assessing colloidal stability of long term MWCNT based nanofluids. Journal of Colloid and Interface Science, 381, 17–23.CrossRef Lamas, B., Abreu, B., Fonseca, A., Martins, N., & Oliveira, M. (2012). Assessing colloidal stability of long term MWCNT based nanofluids. Journal of Colloid and Interface Science, 381, 17–23.CrossRef
70.
go back to reference Yang, J., et al. (2011). Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate. Small (Weinheim an der Bergstrasse, Germany), 7, 2334–2340.CrossRef Yang, J., et al. (2011). Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate. Small (Weinheim an der Bergstrasse, Germany), 7, 2334–2340.CrossRef
72.
go back to reference Odenbach, S., & Störk, H. (1998). Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates. Journal of Magnetism and Magnetic Materials, 183, 188–194.CrossRef Odenbach, S., & Störk, H. (1998). Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates. Journal of Magnetism and Magnetic Materials, 183, 188–194.CrossRef
73.
go back to reference Odenbach, S. (2003). Magnetic fluids—Suspensions of magnetic dipoles and their magnetic control. Journal of Physics: Condensed Matter, 15. Odenbach, S. (2003). Magnetic fluids—Suspensions of magnetic dipoles and their magnetic control. Journal of Physics: Condensed Matter, 15.
74.
go back to reference Rosensweig, R. E. (1969). Viscosity of magnetic fluid in a magnetic field. Journal of Colloid and Interface Science, 20, 680–687.CrossRef Rosensweig, R. E. (1969). Viscosity of magnetic fluid in a magnetic field. Journal of Colloid and Interface Science, 20, 680–687.CrossRef
75.
go back to reference Shliomis, M. (1972). Effective viscosity of magnetic suspensions. Soviet Physics, JETP, 34, 1291–1294. Shliomis, M. (1972). Effective viscosity of magnetic suspensions. Soviet Physics, JETP, 34, 1291–1294.
76.
go back to reference Shliomis, M. I., & Morozov, K. I. (1994). Negative viscosity of ferrofluid under alternating magnetic field. Physics of Fluids, 6, 2855–2861.MATHCrossRef Shliomis, M. I., & Morozov, K. I. (1994). Negative viscosity of ferrofluid under alternating magnetic field. Physics of Fluids, 6, 2855–2861.MATHCrossRef
77.
go back to reference Zablotsky, D., Mezulis, A., & Blums, E. (2009). Surface cooling based on the thermomagnetic convection: Numerical simulation and experiment. International Journal of Heat and Mass Transfer, 52, 5302–5308.CrossRef Zablotsky, D., Mezulis, A., & Blums, E. (2009). Surface cooling based on the thermomagnetic convection: Numerical simulation and experiment. International Journal of Heat and Mass Transfer, 52, 5302–5308.CrossRef
78.
go back to reference Jana, S., Salehi-Khojin, A., & Zhong, W.-H. (2007). Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochimica Acta, 462, 45–55.CrossRef Jana, S., Salehi-Khojin, A., & Zhong, W.-H. (2007). Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochimica Acta, 462, 45–55.CrossRef
79.
go back to reference Chamsa-Ard, W., Brundavanam, S., Fung, C. C., Fawcett, D. & Poinern, G. (2017). Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A Review. Nanomater. (Basel, Switzerland), 7, 131. Chamsa-Ard, W., Brundavanam, S., Fung, C. C., Fawcett, D. & Poinern, G. (2017). Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A Review. Nanomater. (Basel, Switzerland), 7, 131.
80.
go back to reference Timofeeva, E. V., et al. (2007). Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 76, 28–39. Timofeeva, E. V., et al. (2007). Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 76, 28–39.
81.
go back to reference Yoo, D.-H., Hong, K. S., & Yang, H.-S. (2007). Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta, 455, 66–69.CrossRef Yoo, D.-H., Hong, K. S., & Yang, H.-S. (2007). Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta, 455, 66–69.CrossRef
82.
go back to reference Lee, J.-H. H., et al. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3nanoparticles. International Journal of Heat and Mass Transfer, 51, 2651–2656.CrossRef Lee, J.-H. H., et al. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3nanoparticles. International Journal of Heat and Mass Transfer, 51, 2651–2656.CrossRef
83.
go back to reference Murshed, S. M. S., Leong, K. C., & Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47, 560–568.CrossRef Murshed, S. M. S., Leong, K. C., & Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47, 560–568.CrossRef
84.
go back to reference Oh, D.-W., Jain, A., Eaton, J. K., Goodson, K. E., & Lee, J. S. (2008). Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. International Journal of Heat and Fluid Flow, 29, 1456–1461.CrossRef Oh, D.-W., Jain, A., Eaton, J. K., Goodson, K. E., & Lee, J. S. (2008). Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. International Journal of Heat and Fluid Flow, 29, 1456–1461.CrossRef
85.
go back to reference Chandrasekar, M., Suresh, S. & Chandra Bose, A. (2010). xperimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science, 34, 210–216. Chandrasekar, M., Suresh, S. & Chandra Bose, A. (2010). xperimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science, 34, 210–216.
86.
go back to reference Ali, F. M., Yunus, W. M. M., & Talib, Z. A. (2013). Study of the effect of particles size and volume fraction concentration on the thermal conductivity and thermal diffusivity of Al2O3 nanofluids. International Journal of Physical Sciences, 8, 1442–1457. Ali, F. M., Yunus, W. M. M., & Talib, Z. A. (2013). Study of the effect of particles size and volume fraction concentration on the thermal conductivity and thermal diffusivity of Al2O3 nanofluids. International Journal of Physical Sciences, 8, 1442–1457.
Metadata
Title
Nanofluids: Definition & Classification
Authors
Aditya Kumar
Sudhakar Subudhi
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4248-4_2

Premium Partners