Skip to main content
Top

2019 | OriginalPaper | Chapter

24. Nanoindentation and Indentation Size Effects: Continuum Model and Atomistic Simulation

Authors : Chi-Hua Yu, Kuan-Po Lin, Chuin-Shan Chen

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoindentation is one of the most widely used methods to measure the mechanical properties of materials at the nanoscale. For spherical indenters, when radius decreases, the hardness increases. The phenomenon is known as the indentation size effect (ISE). Nix and Gao developed a continuum model to explain the ISE in microindentation. However, the model overestimates the hardness at the nanoscale. The objective of this study is to develop proper methods to probe key quantities such as hardness and geometric necessary dislocation (GND) density from the quasi-static version of molecular dynamics (MD) simulations and to develop a mechanism-based model to elucidate the ISE phenomenon at the nanoscale. A reliable method is presented to extract the GND directly from dislocation length and the volume of plastic zone in the MD simulations. We conclude that the hardness determined directly from MD simulations matches well with the hardness determined from the Oliver–Pharr method. The ISE can be observed directly from the MD simulations without any free parameters. The model by Swadener et al. rooted from the Nix and Gao model underestimates the GND density at the nanoscale. However, this model can accurately predict the hardness size effects in nanoindentation if it uses the GND density directly calculated from the MD simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Feng G, Nix WD. Indentation size effect in MgO. Scr Mater. 2004;51(6):599–603.CrossRef Feng G, Nix WD. Indentation size effect in MgO. Scr Mater. 2004;51(6):599–603.CrossRef
2.
go back to reference Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact. 2002;48(1):11–36.CrossRef Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact. 2002;48(1):11–36.CrossRef
3.
go back to reference Mook WM, et al. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology. 2010;21(5):055701.CrossRef Mook WM, et al. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology. 2010;21(5):055701.CrossRef
4.
go back to reference Fischer-Cripps AC, SpringerLink (Online service). Nanoindentation. 3rd ed. Mechanical engineering series 1. New York: Springer; 2011. CrossRef Fischer-Cripps AC, SpringerLink (Online service). Nanoindentation. 3rd ed. Mechanical engineering series 1. New York: Springer; 2011. CrossRef
5.
go back to reference Pharr GM. Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A. 1998;253(1–2):151–9.CrossRef Pharr GM. Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A. 1998;253(1–2):151–9.CrossRef
6.
go back to reference Pethicai J, Hutchings R, Oliver W. Hardness measurement at penetration depths as small as 20 nm. Philos Mag A. 1983;48(4):593–606.CrossRef Pethicai J, Hutchings R, Oliver W. Hardness measurement at penetration depths as small as 20 nm. Philos Mag A. 1983;48(4):593–606.CrossRef
7.
go back to reference Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–83.CrossRef Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–83.CrossRef
8.
go back to reference Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19(1): 3–20.CrossRef Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19(1): 3–20.CrossRef
9.
go back to reference Lee C, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.CrossRef Lee C, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.CrossRef
10.
go back to reference Li X, et al. Nanoindentation of silver nanowires. Nano Lett. 2003;3(11):1495–8.CrossRef Li X, et al. Nanoindentation of silver nanowires. Nano Lett. 2003;3(11):1495–8.CrossRef
11.
go back to reference Turner CH, et al. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 1999;32(4):437–41.CrossRef Turner CH, et al. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 1999;32(4):437–41.CrossRef
12.
go back to reference Zhu T, Li J. Ultra-strength materials. Prog Mater Sci. 2010;55(7):710–57.CrossRef Zhu T, Li J. Ultra-strength materials. Prog Mater Sci. 2010;55(7):710–57.CrossRef
13.
go back to reference Shan ZW, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater. 2008;7(2):115–9.CrossRef Shan ZW, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater. 2008;7(2):115–9.CrossRef
14.
go back to reference Greer JR. Bridging the gap between computational and experimental length scales: a review on nanoscale plasticity. Rev Adv Mater Sci. 2006;13(1):59–70. Greer JR. Bridging the gap between computational and experimental length scales: a review on nanoscale plasticity. Rev Adv Mater Sci. 2006;13(1):59–70.
15.
go back to reference Ashby MF. Deformation of plastically non-homogeneous materials. Philos Mag. 1970;21(170): 399.CrossRef Ashby MF. Deformation of plastically non-homogeneous materials. Philos Mag. 1970;21(170): 399.CrossRef
16.
go back to reference Nye JF. Some geometrical relations in dislocated crystals. Acta Metall. 1953;1(2):153–62.CrossRef Nye JF. Some geometrical relations in dislocated crystals. Acta Metall. 1953;1(2):153–62.CrossRef
17.
go back to reference Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998;46(3):411–25.MATHCrossRef Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998;46(3):411–25.MATHCrossRef
18.
go back to reference Tymiak NI, et al. Plastic strain and strain gradients at very small indentation depths. Acta Mater. 2001;49(6):1021–34.CrossRef Tymiak NI, et al. Plastic strain and strain gradients at very small indentation depths. Acta Mater. 2001;49(6):1021–34.CrossRef
19.
go back to reference Baker SP, Vinci RP, Arias T. Elastic and anelastic behavior of materials in small dimensions. MRS Bull. 2002;27(1):26–9.CrossRef Baker SP, Vinci RP, Arias T. Elastic and anelastic behavior of materials in small dimensions. MRS Bull. 2002;27(1):26–9.CrossRef
20.
go back to reference Elmustafa AA, Stone DS. Indentation size effect in polycrystalline F.C.C. metals. Acta Mater. 2002;50(14):3641–50.CrossRef Elmustafa AA, Stone DS. Indentation size effect in polycrystalline F.C.C. metals. Acta Mater. 2002;50(14):3641–50.CrossRef
21.
go back to reference Gerberich WW, et al. Interpretations of indentation size effects. J Appl Mech-Trans ASME. 2002;69(4):433–42.MATHCrossRef Gerberich WW, et al. Interpretations of indentation size effects. J Appl Mech-Trans ASME. 2002;69(4):433–42.MATHCrossRef
22.
go back to reference Choi Y, et al. Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. J Appl Phys. 2003;94(9):6050–8.CrossRef Choi Y, et al. Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. J Appl Phys. 2003;94(9):6050–8.CrossRef
23.
go back to reference Elmustafa AA, Stone DS. Nanoindentation and the indentation size effect: kinetics of deformation and strain gradient plasticity. J Mech Phys Solids. 2003;51(2):357–81.MATHCrossRef Elmustafa AA, Stone DS. Nanoindentation and the indentation size effect: kinetics of deformation and strain gradient plasticity. J Mech Phys Solids. 2003;51(2):357–81.MATHCrossRef
24.
go back to reference Peng Z, Gong J, Miao H. On the description of indentation size effect in hardness testing for ceramics: analysis of the nanoindentation data. J Eur Ceram Soc. 2004;24(8):2193–201.CrossRef Peng Z, Gong J, Miao H. On the description of indentation size effect in hardness testing for ceramics: analysis of the nanoindentation data. J Eur Ceram Soc. 2004;24(8):2193–201.CrossRef
25.
go back to reference Durst K, Backes B, Göken M. Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater. 2005;52(11):1093–7.CrossRef Durst K, Backes B, Göken M. Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater. 2005;52(11):1093–7.CrossRef
26.
go back to reference Soer WA, Aifantis KE, De Hosson JTM. Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater. 2005;53(17):4665–76.CrossRef Soer WA, Aifantis KE, De Hosson JTM. Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater. 2005;53(17):4665–76.CrossRef
27.
go back to reference Yang B, Vehoff H. Grain size effects on the mechanical properties of nanonickel examined by nanoindentation. Mater Sci Eng A. 2005;400–401(Suppl 1–2):467–70.CrossRef Yang B, Vehoff H. Grain size effects on the mechanical properties of nanonickel examined by nanoindentation. Mater Sci Eng A. 2005;400–401(Suppl 1–2):467–70.CrossRef
28.
go back to reference Lilleodden ET, Nix WD. Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Mater. 2006;54(6):1583–93.CrossRef Lilleodden ET, Nix WD. Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Mater. 2006;54(6):1583–93.CrossRef
29.
go back to reference Wang JL, et al. Size effect in contact compression of nano- and microscale pyramid structures. Acta Mater. 2006;54(15):3973–82.CrossRef Wang JL, et al. Size effect in contact compression of nano- and microscale pyramid structures. Acta Mater. 2006;54(15):3973–82.CrossRef
30.
go back to reference Abu Al-Rub RK. Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mech Mater. 2007;39(8):787–802.CrossRef Abu Al-Rub RK. Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mech Mater. 2007;39(8):787–802.CrossRef
31.
go back to reference Durst K, Goken M, Pharr GM. Indentation size effect in spherical and pyramidal indentations. J Phys D-Appl Phys. 2008;41(7):074005.CrossRef Durst K, Goken M, Pharr GM. Indentation size effect in spherical and pyramidal indentations. J Phys D-Appl Phys. 2008;41(7):074005.CrossRef
32.
go back to reference Demir E, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 2009;57(2):559–69.CrossRef Demir E, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 2009;57(2):559–69.CrossRef
33.
go back to reference Qiao XG, Starink MJ, Gao N. The influence of indenter tip rounding on the indentation size effect. Acta Mater. 2010;58(10):3690–700.CrossRef Qiao XG, Starink MJ, Gao N. The influence of indenter tip rounding on the indentation size effect. Acta Mater. 2010;58(10):3690–700.CrossRef
34.
go back to reference Swadener JG, George EP, Pharr GM. The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids. 2002;50(4):681–94.MATHCrossRef Swadener JG, George EP, Pharr GM. The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids. 2002;50(4):681–94.MATHCrossRef
35.
go back to reference Stelmashenko NA, et al. Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater. 1993;41(10):2855–65.CrossRef Stelmashenko NA, et al. Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater. 1993;41(10):2855–65.CrossRef
36.
go back to reference McElhaney KW, Vlassak JJ, Nix WD. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res. 1998;13(05):1300–6.CrossRef McElhaney KW, Vlassak JJ, Nix WD. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res. 1998;13(05):1300–6.CrossRef
37.
go back to reference Durst K, et al. Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 2006;54(9): 2547–55.CrossRef Durst K, et al. Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 2006;54(9): 2547–55.CrossRef
38.
go back to reference Huang Y, et al. A nano-indentation model for spherical indenters. Model Simul Mater Sci Eng. 2007;15(1):S255.CrossRef Huang Y, et al. A nano-indentation model for spherical indenters. Model Simul Mater Sci Eng. 2007;15(1):S255.CrossRef
39.
go back to reference Li X, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature. 2010;464(7290):877–80.CrossRef Li X, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature. 2010;464(7290):877–80.CrossRef
40.
go back to reference Kallman JS, et al. Molecular dynamics of silicon indentation. Phys Rev B Condens Matter. 1993;47(13):7705–9.CrossRef Kallman JS, et al. Molecular dynamics of silicon indentation. Phys Rev B Condens Matter. 1993;47(13):7705–9.CrossRef
41.
go back to reference Horstemeyer MF, Baskes MI, Plimpton SJ. Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 2001;49(20):4363–74.CrossRef Horstemeyer MF, Baskes MI, Plimpton SJ. Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 2001;49(20):4363–74.CrossRef
42.
go back to reference Liang HY, et al. Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation. CMES-Comput Model Eng Sci. 2004;6(1):105–14.MATH Liang HY, et al. Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation. CMES-Comput Model Eng Sci. 2004;6(1):105–14.MATH
43.
go back to reference Lee Y, et al. Atomistic simulations of incipient plasticity under Al(1 1 1) nanoindentation. Mech Mater. 2005;37(10):1035–48.CrossRef Lee Y, et al. Atomistic simulations of incipient plasticity under Al(1 1 1) nanoindentation. Mech Mater. 2005;37(10):1035–48.CrossRef
44.
go back to reference Yamakov V, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 2001;49(14):2713–22.CrossRef Yamakov V, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 2001;49(14):2713–22.CrossRef
45.
go back to reference Gannepalli A, Mallapragada SK. Atomistic studies of defect nucleation during nanoindentation of Au(001). Phys Rev B. 2002;66(10):1041031–9.CrossRef Gannepalli A, Mallapragada SK. Atomistic studies of defect nucleation during nanoindentation of Au(001). Phys Rev B. 2002;66(10):1041031–9.CrossRef
46.
go back to reference Lilleodden ET, et al. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J Mech Phys Solids. 2003;51(5):901–20.MATHCrossRef Lilleodden ET, et al. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J Mech Phys Solids. 2003;51(5):901–20.MATHCrossRef
47.
go back to reference Nair AK, et al. Size effects in indentation response of thin films at the nanoscale: a molecular dynamics study. Int J Plast. 2008;24(11):2016–31.MATHCrossRef Nair AK, et al. Size effects in indentation response of thin films at the nanoscale: a molecular dynamics study. Int J Plast. 2008;24(11):2016–31.MATHCrossRef
48.
go back to reference Gao Y, et al. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J Mech Phys Solids. 2015;75(0):58–75.CrossRef Gao Y, et al. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J Mech Phys Solids. 2015;75(0):58–75.CrossRef
49.
go back to reference Honeycutt JD, Andersen HC. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem. 1987;91(19):4950–63.CrossRef Honeycutt JD, Andersen HC. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem. 1987;91(19):4950–63.CrossRef
50.
go back to reference Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58(17):11085–8.CrossRef Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58(17):11085–8.CrossRef
51.
go back to reference Ackland GJ, Jones AP. Applications of local crystal structure measures in experiment and simulation. PhRvB. 2006;73(5). Ackland GJ, Jones AP. Applications of local crystal structure measures in experiment and simulation. PhRvB. 2006;73(5). 
52.
go back to reference Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng. 2010;18(8):085001.CrossRef Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng. 2010;18(8):085001.CrossRef
53.
go back to reference Shewchuk JR. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. 1996;1148:203–22. Shewchuk JR. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. 1996;1148:203–22. 
54.
go back to reference Taylor GI. Plastic strain in metals. J Inst Met. 1938;62:307–24. Taylor GI. Plastic strain in metals. J Inst Met. 1938;62:307–24.
55.
go back to reference Dieter GE, Bacon DJ. Mechanical metallurgy. New York: McGraw-Hill; 1988. Dieter GE, Bacon DJ. Mechanical metallurgy. New York: McGraw-Hill; 1988.
57.
go back to reference Baskes MI. Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B. 1992;46(5):2727–42.CrossRef Baskes MI. Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B. 1992;46(5):2727–42.CrossRef
58.
go back to reference Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals cu, ag, au, Ni, Pd, Pt, and their alloys. Phys Rev B. 1986;33(12):7983–91.CrossRef Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals cu, ag, au, Ni, Pd, Pt, and their alloys. Phys Rev B. 1986;33(12):7983–91.CrossRef
Metadata
Title
Nanoindentation and Indentation Size Effects: Continuum Model and Atomistic Simulation
Authors
Chi-Hua Yu
Kuan-Po Lin
Chuin-Shan Chen
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_26

Premium Partners