Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Nanomaterials for CO2 Hydrogenation

Authors : Manuel Romero-Sáez, Leyla Y. Jaramillo, Wilson Henao, Unai de la Torre

Published in: Emerging Nanostructured Materials for Energy and Environmental Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of fossil fuels such as coal, oil, and natural gas has allowed a fast and unprecedented development of human society. However, this has led to a continuous increase in anthropogenic CO2 emissions, which affect human life and the ecological environment through global warming and climate changes. There are various strategies to mitigate the atmospheric concentration of CO2, such as capture, separation, and utilization. Among them, CO2 hydrogenation to obtain different products through catalytic processes is a strategy of great interest. Thus, the catalytic combination of CO2 and hydrogen not only mitigates anthropogenic emissions into Earth’s atmosphere, but it also produces carbon compounds that can be used as fuel or precursors for the production of different chemicals.
This chapter reviews the use of different nanomaterials for CO2 hydrogenation. Three different processes are distinguished, depending on the final product: (i) CO2 hydrogenation to carbon monoxide, (ii) methanol production by CO2 hydrogenation, and (iii) CO2 hydrogenation to methane. It has been included both nanomaterials that act as support and those that can replace the active metal phase. Concerning CO2 hydrogenation to CO, one-dimensional transition metal carbides have received increasing attention because their unique electronic structure allows similar catalytic properties to the expensive noble metals. Attending the high thermal requirements of CO synthesis, emerging metal oxides nanocatalysts are focused to prevent the metal sintering by increasing the metal-support interactions. Controlling the support’s morphology at nanoscale can enhance both catalytic activity and stability at high temperatures up to twice with respect to those conventional micro-sized catalysts. Regarding to methanol production, the nanomaterials most commonly used as supports are those based on carbon, e.g., carbon nanotubes, carbon nanofibers, and graphene oxide. The main advantage of using these materials is their high surface area, which improves metallic phase dispersion, higher thermal and electrical conductivities, and greater mechanical resistance. In addition, the use of intermetallic nanoparticles as an active phase is very promising. The combination of two metals in the same nanoparticle greatly increases the interface between components, which clearly leads to a synergistic effect between them. The use of these nanomaterials improves the activity and selectivity to methanol between 2 and ~50%, compared with classical catalysts. Moreover, similar strategies are equally valid in methane production. Catalysts based on nanoparticles, such as Ni or NiO, supported on traditional metal oxides have been recently reported to improve catalytic activity in CO2 methanation with high resistance to coke deposition. Other supports, such as carbon nanofibers and carbon nanotubes previously mentioned, have shown excellent results, with CO2 conversions higher than 90% and complete selectivity to methane. Finally, TiO2-based catalysts are a promising solution for methane production by the still undeveloped photocatalytic reduction. This reaction can be performed under mild temperatures and pressure conditions, which is a clear advantage for methane synthesis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Fiordaliso EM, Sharafutdinov I, Carvalho HW, Grunwaldt JD, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5(10):5827–5836. https://doi.org/10.1021/acscatal.5b01271 CrossRef Fiordaliso EM, Sharafutdinov I, Carvalho HW, Grunwaldt JD, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5(10):5827–5836. https://​doi.​org/​10.​1021/​acscatal.​5b01271 CrossRef
go back to reference Fishman ZS, He Y, Yang KR, Lounsbury A, Zhu J, Tran TM, Zimmerman JB, Batista VS, Pfefferle LD (2017) Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water shift reaction. Nanoscale 9:12984–12995. https://doi.org/10.1039/C7NR03522E CrossRef Fishman ZS, He Y, Yang KR, Lounsbury A, Zhu J, Tran TM, Zimmerman JB, Batista VS, Pfefferle LD (2017) Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water shift reaction. Nanoscale 9:12984–12995. https://​doi.​org/​10.​1039/​C7NR03522E CrossRef
go back to reference Hashimoto K, Yamasaki M, Fujimura K, Matsui T, Izumiya K, Komori M, El-Moneim AA, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Asami A (1999) Global CO2 recycling – novel materials and prospect for prevention of global warming and abundant energy supply. Mater Sci Eng A 267(2):200–206. https://doi.org/10.1016/S0921-5093(99)00092-1 CrossRef Hashimoto K, Yamasaki M, Fujimura K, Matsui T, Izumiya K, Komori M, El-Moneim AA, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Asami A (1999) Global CO2 recycling – novel materials and prospect for prevention of global warming and abundant energy supply. Mater Sci Eng A 267(2):200–206. https://​doi.​org/​10.​1016/​S0921-5093(99)00092-1 CrossRef
go back to reference Hiller H, Reimert R (2006) Types of gases. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 10 Hiller H, Reimert R (2006) Types of gases. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 10
go back to reference Jiménez V, Jiménez-Borja C, Sánchez P, Romero A, Papaioannou EI, Theleritis D, Souentie S, Brosdac S, Valverde JL (2011) Electrochemical promotion of the CO2 hydrogenation reaction on composite Ni or Ru impregnated carbon nanofiber catalyst-electrodes deposited on YSZ. Appl Catal B Environ 107(1–2):210–220. https://doi.org/10.1016/j.apcatb.2011.07.016 CrossRef Jiménez V, Jiménez-Borja C, Sánchez P, Romero A, Papaioannou EI, Theleritis D, Souentie S, Brosdac S, Valverde JL (2011) Electrochemical promotion of the CO2 hydrogenation reaction on composite Ni or Ru impregnated carbon nanofiber catalyst-electrodes deposited on YSZ. Appl Catal B Environ 107(1–2):210–220. https://​doi.​org/​10.​1016/​j.​apcatb.​2011.​07.​016 CrossRef
go back to reference Lin L, Yao S, Liu Z, Zhang F, Na L, Vovchok D, Martínez-Arias A, Castañeda R, Lin J, Senanayake SD, Su D, Ma D, Rodriguez JA (2018) In-situ characterization of Cu/CeO2 nanocatalysts during CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity. J Phys Chem C 122(24):12934–12943. https://doi.org/10.1021/acs.jpcc.8b03596 CrossRef Lin L, Yao S, Liu Z, Zhang F, Na L, Vovchok D, Martínez-Arias A, Castañeda R, Lin J, Senanayake SD, Su D, Ma D, Rodriguez JA (2018) In-situ characterization of Cu/CeO2 nanocatalysts during CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity. J Phys Chem C 122(24):12934–12943. https://​doi.​org/​10.​1021/​acs.​jpcc.​8b03596 CrossRef
go back to reference Martin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferre D, Perez-Ramirez J (2016) Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew Chem Int Ed 55(37):11031–11036. https://doi.org/10.1002/anie.201603204 CrossRef Martin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferre D, Perez-Ramirez J (2016) Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew Chem Int Ed 55(37):11031–11036. https://​doi.​org/​10.​1002/​anie.​201603204 CrossRef
go back to reference Olah GA, Goeppert A, Prakash GS (2008) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Organomet Chem 74(2):487–498. https://doi.org/10.1021/jo801260f CrossRef Olah GA, Goeppert A, Prakash GS (2008) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Organomet Chem 74(2):487–498. https://​doi.​org/​10.​1021/​jo801260f CrossRef
go back to reference Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal 5(11):6696–6706CrossRef Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal 5(11):6696–6706CrossRef
go back to reference Sabatier P, Senderens JB (1902) New synthesis of methane. Compt Rend 134:514–516 Sabatier P, Senderens JB (1902) New synthesis of methane. Compt Rend 134:514–516
go back to reference Seemann L (2006) Methanation of biosyngas in a fluidized bed reactor – development of a one-step synthesis process, featuring simultaneous methanation, watergas shift and low temperature tar reforming. PhD thesis. ETH Zurich Seemann L (2006) Methanation of biosyngas in a fluidized bed reactor – development of a one-step synthesis process, featuring simultaneous methanation, watergas shift and low temperature tar reforming. PhD thesis. ETH Zurich
go back to reference Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems – limiting global warming by transforming energy systems. PhD thesis. University of Kassel Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems – limiting global warming by transforming energy systems. PhD thesis. University of Kassel
Metadata
Title
Nanomaterials for CO2 Hydrogenation
Authors
Manuel Romero-Sáez
Leyla Y. Jaramillo
Wilson Henao
Unai de la Torre
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-04474-9_4