Skip to main content
Top

2018 | OriginalPaper | Chapter

7. Nanoparticle Fabrication

Authors : Masahiro Inoue, Yamato Hayashi, Hirotsugu Takizawa, Katsuaki Suganuma

Published in: Nanopackaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A wide variety of fabrication processes for nanoparticles and related materials has been developed for the last several decades. Cost-effective and environmentally conscious production of nanomaterials is necessary to establish the nanopackaging technology. In addition, shape-controlled synthesis of nanomaterials such as nanorods and nanowires is also important for developing advanced electronic devices. In this chapter, fundamentals and applications of physical and chemical processes are reviewed to understand recent progress in the industrial production for metal nanoparticles and related materials. This chapter also describes utilization of the nanomaterials for preparing electric wires, electrodes, and interconnects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mulvaney P (2001) Not all that’s gold does glitter. MRS Bull 26(12):1009–1014CrossRef Mulvaney P (2001) Not all that’s gold does glitter. MRS Bull 26(12):1009–1014CrossRef
2.
go back to reference Tanaka T et al (2004) Thermodynamics of the nano-sized particles. In: Letcher TM (ed) Chemical thermodynamics for industry. The Royal Society of Chemistry, London, pp 209–218 Tanaka T et al (2004) Thermodynamics of the nano-sized particles. In: Letcher TM (ed) Chemical thermodynamics for industry. The Royal Society of Chemistry, London, pp 209–218
3.
go back to reference (a) Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Z Phys Chem 65:1–35, (b) Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz). Z Phys Chem 65:545–548 (a) Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Z Phys Chem 65:1–35, (b) Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz). Z Phys Chem 65:545–548
4.
go back to reference Takagi M (1954) Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Jpn 9:359–363CrossRef Takagi M (1954) Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Jpn 9:359–363CrossRef
5.
go back to reference Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269:481–483CrossRef Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269:481–483CrossRef
6.
go back to reference Suganuma K (ed) (2006) Ink-jet wiring of fine pitch circuits with metallic nano particle pastes. CMC Publishing CO., LTD, Tokyo Suganuma K (ed) (2006) Ink-jet wiring of fine pitch circuits with metallic nano particle pastes. CMC Publishing CO., LTD, Tokyo
7.
go back to reference Jiang H et al (2013) Recent advances of nanolead-free solder material for low processing temperature interconnect applications. Microelectron Reliab 53:1968–1978CrossRef Jiang H et al (2013) Recent advances of nanolead-free solder material for low processing temperature interconnect applications. Microelectron Reliab 53:1968–1978CrossRef
8.
go back to reference Sun S et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRef Sun S et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRef
9.
go back to reference Kashchiev D (2000) Nucleation. Basic theory with applications. Butterworth-Heinemann, Woburn Kashchiev D (2000) Nucleation. Basic theory with applications. Butterworth-Heinemann, Woburn
10.
go back to reference Lewis B, Anderson JC (1978) Nucleation and growth of thin films. Academic, New York Lewis B, Anderson JC (1978) Nucleation and growth of thin films. Academic, New York
11.
go back to reference Clouet E (2009) Modeling of nucleation process. In: Furrer DU, Semiatin SL (eds) ASM handbook, vol 22A. Fundamentals of modeling for metals processing. ASM International, Materials Park, pp 203–219 Clouet E (2009) Modeling of nucleation process. In: Furrer DU, Semiatin SL (eds) ASM handbook, vol 22A. Fundamentals of modeling for metals processing. ASM International, Materials Park, pp 203–219
12.
go back to reference Sear RP (2007) Nucleation: theory and applications to protein solutions and colloidal suspensions. J Phys Condens Matter 19:033101CrossRef Sear RP (2007) Nucleation: theory and applications to protein solutions and colloidal suspensions. J Phys Condens Matter 19:033101CrossRef
13.
go back to reference Stoyanov S (1973) On the atomistic theory of nucleation rate. Thin Solid Films 18:91–98CrossRef Stoyanov S (1973) On the atomistic theory of nucleation rate. Thin Solid Films 18:91–98CrossRef
14.
15.
go back to reference Antony LVM, Reddy RG (2003) Processes for production of high-purity metal powders. JOM 55(3):14–18CrossRef Antony LVM, Reddy RG (2003) Processes for production of high-purity metal powders. JOM 55(3):14–18CrossRef
16.
go back to reference Shigeta M, Murphy AB (2011) Thermal plasmas for nanofabrication. J Phys D Appl Phys 44:174025CrossRef Shigeta M, Murphy AB (2011) Thermal plasmas for nanofabrication. J Phys D Appl Phys 44:174025CrossRef
17.
go back to reference Shigeta M, Nishiyama H (2005) Numerical analysis of metallic nanoparticles synthesis using RF inductively coupled plasma flows. J Heat Trans 127:1222–1230CrossRef Shigeta M, Nishiyama H (2005) Numerical analysis of metallic nanoparticles synthesis using RF inductively coupled plasma flows. J Heat Trans 127:1222–1230CrossRef
18.
go back to reference Ostrikov JK, Murphy AB (2007) Plasma-aided nanofabrication: where is the cutting edge? J Phys D Appl Phys 40:2223–2241CrossRef Ostrikov JK, Murphy AB (2007) Plasma-aided nanofabrication: where is the cutting edge? J Phys D Appl Phys 40:2223–2241CrossRef
19.
go back to reference Haidar J (2009) Synthesis of Al nanopowders in an anodic arc. Plasma Chem Plasma Process 29:307–319CrossRef Haidar J (2009) Synthesis of Al nanopowders in an anodic arc. Plasma Chem Plasma Process 29:307–319CrossRef
20.
go back to reference Barankin MD et al (2006) Synthesis of nanoparticles in an atmospheric pressure glow discharge. J Nanopart Res 8:511–517CrossRef Barankin MD et al (2006) Synthesis of nanoparticles in an atmospheric pressure glow discharge. J Nanopart Res 8:511–517CrossRef
21.
go back to reference Zihlmann S (2014) Seeded growth of monodisperse and spherical silver nanoparticles. J Aerosol Sci 75:81–93CrossRef Zihlmann S (2014) Seeded growth of monodisperse and spherical silver nanoparticles. J Aerosol Sci 75:81–93CrossRef
22.
go back to reference Smith DL (1995) Thin-film deposition, principles & practice. McGraw-Hill, Boston Smith DL (1995) Thin-film deposition, principles & practice. McGraw-Hill, Boston
23.
go back to reference Koinuma H et al (1997) Laser MBE of ceramic thin film for future electronics. Appl Surf Sci 109:514–519CrossRef Koinuma H et al (1997) Laser MBE of ceramic thin film for future electronics. Appl Surf Sci 109:514–519CrossRef
24.
go back to reference Reiner JW et al (2010) Crystalline oxides on silicon. Adv Mater 22:2912–2938 Reiner JW et al (2010) Crystalline oxides on silicon. Adv Mater 22:2912–2938
25.
go back to reference Hwang HY et al (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113CrossRef Hwang HY et al (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113CrossRef
26.
go back to reference Morris JE, Coutts TJ (1977) Electrical-conduction in discontinuous metal-films – discussion. Thin Solid Films 47:3–65CrossRef Morris JE, Coutts TJ (1977) Electrical-conduction in discontinuous metal-films – discussion. Thin Solid Films 47:3–65CrossRef
27.
go back to reference Morris JE (1998) Recent developments in discontinuous metal thin film devices. Vacuum 50:107–103CrossRef Morris JE (1998) Recent developments in discontinuous metal thin film devices. Vacuum 50:107–103CrossRef
28.
go back to reference Wei H, Eilers H (2009) From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates. J Phys Chem Solids 70:459–465CrossRef Wei H, Eilers H (2009) From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates. J Phys Chem Solids 70:459–465CrossRef
29.
go back to reference Eaglesham DJ, Cerullo M (1990) Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys Rev Lett 64:1943–1946CrossRef Eaglesham DJ, Cerullo M (1990) Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys Rev Lett 64:1943–1946CrossRef
30.
go back to reference Bhattachaya P et al (2004) Quantum dot opto-electronic devices. Annu Rev Mater Res 34:1–40CrossRef Bhattachaya P et al (2004) Quantum dot opto-electronic devices. Annu Rev Mater Res 34:1–40CrossRef
31.
go back to reference Akahane K et al (2002) Fabrication of ultra-high density InAs-stacked quantum dots by strain-controlled growth on InP(311)B substrate. J Cryst Growth 245:31–36CrossRef Akahane K et al (2002) Fabrication of ultra-high density InAs-stacked quantum dots by strain-controlled growth on InP(311)B substrate. J Cryst Growth 245:31–36CrossRef
32.
go back to reference Harrison P (2005) Quantum wells, wires and dots, 2nd edn. Wiley, West SussexCrossRef Harrison P (2005) Quantum wells, wires and dots, 2nd edn. Wiley, West SussexCrossRef
33.
go back to reference LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854CrossRef LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854CrossRef
34.
go back to reference Abe K et al (1998) Two dimensional array of silver nanoparticles. Thin Solid Films 327–329:524–527CrossRef Abe K et al (1998) Two dimensional array of silver nanoparticles. Thin Solid Films 327–329:524–527CrossRef
35.
go back to reference Yamamoto M, Nakamoto M (2004) A new approach for the Au/Ag alloy nanoparticle formation through the reduction of Ag(I) to Ag(0) by amine and intermetallic electron transfer from Ag(0) to gold(I) complex. Chem Lett 33:1340–1341CrossRef Yamamoto M, Nakamoto M (2004) A new approach for the Au/Ag alloy nanoparticle formation through the reduction of Ag(I) to Ag(0) by amine and intermetallic electron transfer from Ag(0) to gold(I) complex. Chem Lett 33:1340–1341CrossRef
36.
go back to reference Ito M et al (2009) Direct transformation into silver nanoparticles via thermal decomposition of oxalate-bridging silver oleylamine. J Nanosci Nanotechnol 9:6655–6660CrossRef Ito M et al (2009) Direct transformation into silver nanoparticles via thermal decomposition of oxalate-bridging silver oleylamine. J Nanosci Nanotechnol 9:6655–6660CrossRef
37.
go back to reference Fukuda K et al (2012) Organic integrated circuits using room-temperature sintered silver nanoparticles as printed electrodes. Org Electron 13:3296–3301CrossRef Fukuda K et al (2012) Organic integrated circuits using room-temperature sintered silver nanoparticles as printed electrodes. Org Electron 13:3296–3301CrossRef
38.
go back to reference Hirose K et al (2012) Low temperature wiring technology with silver β-ketocarboxylate. IEICE Trans Electron (Jpn Ed) J95-C:394–399 Hirose K et al (2012) Low temperature wiring technology with silver β-ketocarboxylate. IEICE Trans Electron (Jpn Ed) J95-C:394–399
39.
go back to reference Hayashi Y et al (2005) Ecodesigns and applications for noble metal nanoparticles by ultrasound process. IEEE Trans Electron Packag Manuf 28:338–343CrossRef Hayashi Y et al (2005) Ecodesigns and applications for noble metal nanoparticles by ultrasound process. IEEE Trans Electron Packag Manuf 28:338–343CrossRef
40.
go back to reference Hayashi Y, Niihara K (2004) Ceramics nanocomposite. Eng Mater Des 52:50–51 Hayashi Y, Niihara K (2004) Ceramics nanocomposite. Eng Mater Des 52:50–51
41.
go back to reference Hayashi Y (2014) Fabrication of nano and micro material by ultrasonic and microwave excited reaction fields. Mater Jpn 53:541–545CrossRef Hayashi Y (2014) Fabrication of nano and micro material by ultrasonic and microwave excited reaction fields. Mater Jpn 53:541–545CrossRef
42.
go back to reference West AR (1984) Basic solid state chemistry. Wiley, New York West AR (1984) Basic solid state chemistry. Wiley, New York
43.
go back to reference Mizuta S, Koumoto K (1996) Materials science for ceramics. University of Tokyo Press, Tokyo Mizuta S, Koumoto K (1996) Materials science for ceramics. University of Tokyo Press, Tokyo
44.
go back to reference Hayashi Y et al (1999) Mechanical and electrical properties of ZnO/Ag nanocomposites. In: Singh JP et al (eds) Advances in ceramic matrix composites IV: ceramic transaction, vol 96. American Ceramic Society, Westerville, pp 209–218 Hayashi Y et al (1999) Mechanical and electrical properties of ZnO/Ag nanocomposites. In: Singh JP et al (eds) Advances in ceramic matrix composites IV: ceramic transaction, vol 96. American Ceramic Society, Westerville, pp 209–218
45.
go back to reference Crum LA (1995) Bubbles hotter than the sun. New Sci 146:36–40 Crum LA (1995) Bubbles hotter than the sun. New Sci 146:36–40
46.
go back to reference Luce JL (1994) Effect of ultrasound on heterogeneous systems. Ultrason Sonochem 1:S111–S118CrossRef Luce JL (1994) Effect of ultrasound on heterogeneous systems. Ultrason Sonochem 1:S111–S118CrossRef
48.
go back to reference Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326CrossRef Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326CrossRef
49.
go back to reference Inoue M et al (2010) Formation mechanism of nanostructured Ag films from Ag2O particles using a sonoprocess. Colloid Polym Sci 288:1061–1069CrossRef Inoue M et al (2010) Formation mechanism of nanostructured Ag films from Ag2O particles using a sonoprocess. Colloid Polym Sci 288:1061–1069CrossRef
50.
go back to reference Hayashi Y, Takizawa H (2014) Metal nanoparticle fabrication by ultrasound and microwave reactors in solid-liquid system. Catal Catal (Catal Soc Jpn) 56:41–47 Hayashi Y, Takizawa H (2014) Metal nanoparticle fabrication by ultrasound and microwave reactors in solid-liquid system. Catal Catal (Catal Soc Jpn) 56:41–47
51.
go back to reference Fievet F et al (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32/33:198–205CrossRef Fievet F et al (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32/33:198–205CrossRef
52.
go back to reference Xia Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRef Xia Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRef
53.
go back to reference Jiu J et al (2014) Facile synthesis of very-long silver nanowires for transparent electrodes. J Mater Chem A 2:6326–6330CrossRef Jiu J et al (2014) Facile synthesis of very-long silver nanowires for transparent electrodes. J Mater Chem A 2:6326–6330CrossRef
54.
go back to reference Jiu J et al (2012) Strong adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J Mater Chem 22:23561–23567CrossRef Jiu J et al (2012) Strong adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J Mater Chem 22:23561–23567CrossRef
55.
go back to reference Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97:6961–6973CrossRef Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97:6961–6973CrossRef
56.
go back to reference Eastoe J et al (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interf Sci 128–130:5–15CrossRef Eastoe J et al (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interf Sci 128–130:5–15CrossRef
57.
go back to reference Pileni MP (2003) Nanocrystals: fabrication, organization and collective properties. C R Chim 6:965–978CrossRef Pileni MP (2003) Nanocrystals: fabrication, organization and collective properties. C R Chim 6:965–978CrossRef
58.
go back to reference Sun W et al (2014) Casting inorganic structures with DNA molds. Science 346:1258361CrossRef Sun W et al (2014) Casting inorganic structures with DNA molds. Science 346:1258361CrossRef
59.
go back to reference Sugawara K et al (2015) Facile synthesis of silver-nanobeadwire transparent conductive film by organic-precursor paint reduction. Cryst Res Technol 50:319–330CrossRef Sugawara K et al (2015) Facile synthesis of silver-nanobeadwire transparent conductive film by organic-precursor paint reduction. Cryst Res Technol 50:319–330CrossRef
60.
go back to reference Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Elsevier, Burlington Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Elsevier, Burlington
61.
go back to reference Ninham BW (1999) On progress in forces since the DLVO theory. Adv Colloid Interf Sci 83:1–17CrossRef Ninham BW (1999) On progress in forces since the DLVO theory. Adv Colloid Interf Sci 83:1–17CrossRef
62.
go back to reference Iwama S, Hayakawa K (1981) Sintering of ultrafine metal powders. 2. Neck growth stage of Au, Ag, Al, Cu. Jpn J Appl Phys 20:335–340CrossRef Iwama S, Hayakawa K (1981) Sintering of ultrafine metal powders. 2. Neck growth stage of Au, Ag, Al, Cu. Jpn J Appl Phys 20:335–340CrossRef
63.
go back to reference Wakuda D et al (2007) Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem Phys Lett 441:305–308CrossRef Wakuda D et al (2007) Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem Phys Lett 441:305–308CrossRef
64.
go back to reference Stranick SJ et al (1994) A new mechanism for surface diffusion: motion of a substrate-adsorbate complex. J Phys Chem 98:11136–11142CrossRef Stranick SJ et al (1994) A new mechanism for surface diffusion: motion of a substrate-adsorbate complex. J Phys Chem 98:11136–11142CrossRef
65.
go back to reference Kanehara K et al (2008) Gold(0) porphyrins on gold nanoparticles. Angew Chem Int Ed 47:307–310CrossRef Kanehara K et al (2008) Gold(0) porphyrins on gold nanoparticles. Angew Chem Int Ed 47:307–310CrossRef
66.
go back to reference Renn MJ et al (2010) Aerosol jet printing of high density, 3-D interconnects for multi-chip packaging. IMAPS. 2010, Phoenix Renn MJ et al (2010) Aerosol jet printing of high density, 3-D interconnects for multi-chip packaging. IMAPS. 2010, Phoenix
67.
go back to reference Mahajan A et al (2013) Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Appl Mater Interfaces 5:4856–4864CrossRef Mahajan A et al (2013) Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Appl Mater Interfaces 5:4856–4864CrossRef
68.
go back to reference Byeon JH, Kim J-W (2010) Fabrication of a pure, uniform electroless silver film using ultrafine silver aerosol particles. Langmuir 26:11928–11933CrossRef Byeon JH, Kim J-W (2010) Fabrication of a pure, uniform electroless silver film using ultrafine silver aerosol particles. Langmuir 26:11928–11933CrossRef
69.
70.
go back to reference Byeon JH et al (2015) An aerosol-based soft lithography to fabricate nanoscale silver dots and rings for spectroscopic applications. Nanoscale 7:2271–2275CrossRef Byeon JH et al (2015) An aerosol-based soft lithography to fabricate nanoscale silver dots and rings for spectroscopic applications. Nanoscale 7:2271–2275CrossRef
Metadata
Title
Nanoparticle Fabrication
Authors
Masahiro Inoue
Yamato Hayashi
Hirotsugu Takizawa
Katsuaki Suganuma
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-90362-0_7

Premium Partners