Skip to main content
Top

2019 | OriginalPaper | Chapter

12. Nanostructural Response to Plastic Deformation in Glassy Polymers

Authors : George Z. Voyiadjis, Aref Samadi-Dooki

Published in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A closed form stress-strain relation is proposed for modeling the postyield behavior of amorphous polymers based on the shear transformation zones (STZs) dynamics and free volume evolution. Use is made of the classical free volume theory by Cohn and Turnbull (J Chem Phys 31:1164, 1959), and also STZ-mediated plasticity model for amorphous metals by Spaepen (Acta Metall 25:407, 1977) and Argon (Acta Metall 27:47, 1979) for developing a new homogenous plasticity framework for glassy polymers. The variations of free volume content and STZs activation energy during large deformation are parametrized considering the previous experimental measurements using positron annihilation lifetime spectroscopy (PALS) and thermal analysis with differential scanning calorimetry (DSC), respectively. The proposed model captures the softening-hardening behavior of glassy polymers at large strains with a single formula. This study shows that the postyield softening of the glassy polymers is a result of the reduction of the STZs nucleation energy as a consequence of increased free volume content during the plastic straining up to a steady-state point. Beyond the steady-state strain where the STZ nucleation energy reaches a plateau, the increased number density of STZs, which is required for finite strain, brings about the secondary hardening continuing up to the fracture point. This model also accurately predicts the effect of strain rate, temperature, and thermal history of the sample on its postyield behavior which is in consonance with experimental observations. Implication of the model for interpreting the localization and indentation size effect of polymers is also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference A.S. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, Oxford, 2008) A.S. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, Oxford, 2008)
go back to reference A.S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University Press, New York, 2013)CrossRef A.S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University Press, New York, 2013)CrossRef
go back to reference E.M. Arruda, M.C. Boyce, in Anisotropy and Localization of Plastic Deformation, ed. by J-P. Boehler, A.S. Khan (Elsevier Applied Science, London and New York, 1991), p. 483 E.M. Arruda, M.C. Boyce, in Anisotropy and Localization of Plastic Deformation, ed. by J-P. Boehler, A.S. Khan (Elsevier Applied Science, London and New York, 1991), p. 483
go back to reference J.D. Eshelby, Proc. Roy. Soc. London Ser. A 241, 376 (1957) J.D. Eshelby, Proc. Roy. Soc. London Ser. A 241, 376 (1957)
go back to reference K. Flores, D. Suh, R. Dauskardt, P. Asoka-Kumar, P. Sterne, R. Howell, J. Mater. Res. 17, 1153 (2002)CrossRef K. Flores, D. Suh, R. Dauskardt, P. Asoka-Kumar, P. Sterne, R. Howell, J. Mater. Res. 17, 1153 (2002)CrossRef
go back to reference N. Ghadipasha, A. Geraili, J.A. Romagnoli, C.A. Castor, M.F. Drenski, W.F. Reed, Processes 4, 5 (2016)CrossRef N. Ghadipasha, A. Geraili, J.A. Romagnoli, C.A. Castor, M.F. Drenski, W.F. Reed, Processes 4, 5 (2016)CrossRef
go back to reference O. Hasan, M. Boyce, X. Li, S. Berko, J. Polym. Sci. B Polym. Phys. 31, 185 (1993)CrossRef O. Hasan, M. Boyce, X. Li, S. Berko, J. Polym. Sci. B Polym. Phys. 31, 185 (1993)CrossRef
go back to reference P. de Hey, J. Sietsma, A. Van Den Beukel, Mater. Sci. Eng. A 226, 336 (1997)CrossRef P. de Hey, J. Sietsma, A. Van Den Beukel, Mater. Sci. Eng. A 226, 336 (1997)CrossRef
go back to reference D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, V. Shantarovich, Macromolecules 35, 2129 (2002)CrossRef D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, V. Shantarovich, Macromolecules 35, 2129 (2002)CrossRef
go back to reference H. Hristov, B. Bolan, A. Yee, L. Xie, D. Gidley, Macromolecules 29, 8507 (1996)CrossRef H. Hristov, B. Bolan, A. Yee, L. Xie, D. Gidley, Macromolecules 29, 8507 (1996)CrossRef
go back to reference J. Hutchinson, S. Smith, B. Horne, G. Gourlay, Macromolecules 32, 5046 (1999)CrossRef J. Hutchinson, S. Smith, B. Horne, G. Gourlay, Macromolecules 32, 5046 (1999)CrossRef
go back to reference Y. Jean, J.D. Van Horn, W.-S. Hung, K.-R. Lee, Macromolecules 46, 7133 (2013)CrossRef Y. Jean, J.D. Van Horn, W.-S. Hung, K.-R. Lee, Macromolecules 46, 7133 (2013)CrossRef
go back to reference M. Khoshgoftar, S. Najarian, F. Farmanzad, B. Vahidi, F. Ghomshe, Am. J. Appl. Sci. 4, 918 (2007)CrossRef M. Khoshgoftar, S. Najarian, F. Farmanzad, B. Vahidi, F. Ghomshe, Am. J. Appl. Sci. 4, 918 (2007)CrossRef
go back to reference E. Klompen, T. Engels, L. Govaert, H. Meijer, Macromolecules 38, 6997 (2005)CrossRef E. Klompen, T. Engels, L. Govaert, H. Meijer, Macromolecules 38, 6997 (2005)CrossRef
go back to reference L. Malekmotiei, F. Farahmand, H.M. Shodja, A. Samadi-Dooki, J. Biomech. Eng. 135, 041004 (2013)CrossRef L. Malekmotiei, F. Farahmand, H.M. Shodja, A. Samadi-Dooki, J. Biomech. Eng. 135, 041004 (2013)CrossRef
go back to reference L. Malekmotiei, A. Samadi-Dooki, G.Z. Voyiadjis, Macromolecules 48, 5348 (2015)CrossRef L. Malekmotiei, A. Samadi-Dooki, G.Z. Voyiadjis, Macromolecules 48, 5348 (2015)CrossRef
go back to reference A.D. Mulliken, Low to high strain rate deformation of amorphous polymers: experiments and modeling (Massachusetts Institute of Technology, Massachusetts, 2004) A.D. Mulliken, Low to high strain rate deformation of amorphous polymers: experiments and modeling (Massachusetts Institute of Technology, Massachusetts, 2004)
go back to reference T. Mura, in Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, The Netherlands, 1987) T. Mura, in Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, The Netherlands, 1987)
go back to reference Y. Nanzai, A. Miwa, S.Z. Cui, JSME Int. J. Ser. A Solid Mech. Mater. Eng. 42, 479 (1999)CrossRef Y. Nanzai, A. Miwa, S.Z. Cui, JSME Int. J. Ser. A Solid Mech. Mater. Eng. 42, 479 (1999)CrossRef
go back to reference E. Oleinik, in High Performance Polymers, ed. by E. Baer, A. Moet (Hanser, New York, 1991), p. 79 E. Oleinik, in High Performance Polymers, ed. by E. Baer, A. Moet (Hanser, New York, 1991), p. 79
go back to reference S. Pauly, S. Gorantla, G. Wang, U. Kühn, J. Eckert, Nat. Mater. 9, 473 (2010)CrossRef S. Pauly, S. Gorantla, G. Wang, U. Kühn, J. Eckert, Nat. Mater. 9, 473 (2010)CrossRef
go back to reference H. Shodja, M. Tabatabaei, A. Ostadhossein, L. Pahlevani, Open Eng. 3, 707 (2013)CrossRef H. Shodja, M. Tabatabaei, A. Ostadhossein, L. Pahlevani, Open Eng. 3, 707 (2013)CrossRef
go back to reference L.A. Utracki, A.M. Jamieson, Polymer Physics: From Suspensions to Nanocomposites and Beyond (Wiley, New York, 2011) L.A. Utracki, A.M. Jamieson, Polymer Physics: From Suspensions to Nanocomposites and Beyond (Wiley, New York, 2011)
go back to reference G.Z. Voyiadjis, L. Malekmotiei, J. Polym. Sci. Part B: Polym. Phys. 54, 2179 (2016)CrossRef G.Z. Voyiadjis, L. Malekmotiei, J. Polym. Sci. Part B: Polym. Phys. 54, 2179 (2016)CrossRef
go back to reference Y. Wang, H. Nakanishi, Y. Jean, T. Sandreczki, J. Polym. Sci. B Polym. Phys. 28, 1431 (1990)CrossRef Y. Wang, H. Nakanishi, Y. Jean, T. Sandreczki, J. Polym. Sci. B Polym. Phys. 28, 1431 (1990)CrossRef
go back to reference D. Wang, Z. Zhu, R. Xue, D. Ding, H. Bai, W. Wang, J. Appl. Phys. 114, 173505 (2013)CrossRef D. Wang, Z. Zhu, R. Xue, D. Ding, H. Bai, W. Wang, J. Appl. Phys. 114, 173505 (2013)CrossRef
go back to reference A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, Å. Kvick, Acta Mater. 53, 1611 (2005)CrossRef A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, Å. Kvick, Acta Mater. 53, 1611 (2005)CrossRef
Metadata
Title
Nanostructural Response to Plastic Deformation in Glassy Polymers
Authors
George Z. Voyiadjis
Aref Samadi-Dooki
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_42

Premium Partners