Skip to main content
Top

2021 | OriginalPaper | Chapter

5. Nanostructured Bimetallic Pd-based Catalysts for the Valorization of Lignocellulosic Biomasses

Authors : Emilia Paone, Francesco Mauriello

Published in: Nanostructured Catalysts for Environmental Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is focused on the sustainable valorization of lignin and its derived molecules, through the application of the transfer hydrogenolysis technology, by using nanostructured bimetallic Pd-based catalysts, in order to achieve high added-value products. In particular, nanostructured bimetallic co-precipitated Pd-based catalysts (Pd-M systems), such as Pd/Fe3O4, Pd/Co and Pd/Ni, were used and their textural and structural properties have been deeply elucidated through several characterization techniques (XRD, TEM, SEM, H2-TPR, XPS and EXAFS) in order to highlight the key factors that influence the peculiar catalytic activity in the reductive upgrading of lignin-derived aromatic ethers. Hydrogenolysis and transfer hydrogenolysis processes were focused on three model molecules of lignin: Benzyl Phenyl Ether (BPE), Phenethyl Phenyl Ether (PPE) and Diphenyl Ether (DPE) that mimic typical C-O lignin linkages, such as α-O-4, β-O-4 and 4-O-5 bonds. A comparison between the performance of bimetallic Pd-M catalysts and that of the commercial Pd/C is also included.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.O. Tuck, E. Pérez, I.T. Horváth, R.A. Sheldon, M. Poliakoff, Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012)CrossRef C.O. Tuck, E. Pérez, I.T. Horváth, R.A. Sheldon, M. Poliakoff, Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012)CrossRef
2.
go back to reference R.A. Sheldon, Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 16, 950–963 (2014)CrossRef R.A. Sheldon, Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 16, 950–963 (2014)CrossRef
3.
go back to reference F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015)CrossRef F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015)CrossRef
4.
go back to reference Q. Jin, L. Yang, N. Poe, H. Huang, Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Sci. Technol. 74, 119–131 (2018)CrossRef Q. Jin, L. Yang, N. Poe, H. Huang, Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Sci. Technol. 74, 119–131 (2018)CrossRef
5.
go back to reference A.M. Ruppert, K. Weinberg, R. Palkovits, Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. 51, 2564–2601 (2012)CrossRef A.M. Ruppert, K. Weinberg, R. Palkovits, Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. 51, 2564–2601 (2012)CrossRef
6.
go back to reference A. Fasolini, R. Cucciniello, E. Paone, F. Mauriello, T. Tabanelli, A short overview on the hydrogen production via aqueous phase reforming (APR) of cellulose, C6-C5 sugars and polyols. Catalysts 9(11), 917 (2019)CrossRef A. Fasolini, R. Cucciniello, E. Paone, F. Mauriello, T. Tabanelli, A short overview on the hydrogen production via aqueous phase reforming (APR) of cellulose, C6-C5 sugars and polyols. Catalysts 9(11), 917 (2019)CrossRef
7.
go back to reference C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588–5617 (2011)CrossRef C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588–5617 (2011)CrossRef
8.
go back to reference C. Xu, E. Paone, D. Rodríguez-Padròn, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 49, 4273–4306 (2020)CrossRef C. Xu, E. Paone, D. Rodríguez-Padròn, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 49, 4273–4306 (2020)CrossRef
9.
go back to reference H. Chen, Chemical composition and structure of natural lignocellulose, in Biotechnology of Lignocellulose: Theory and Practice, (Springer, Cham, 2014)CrossRef H. Chen, Chemical composition and structure of natural lignocellulose, in Biotechnology of Lignocellulose: Theory and Practice, (Springer, Cham, 2014)CrossRef
10.
go back to reference D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)CrossRef D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)CrossRef
11.
go back to reference C. Xu, R.A.D. Arancon, J. Labidi, R. Luque, Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem. Soc. Rev. 43, 7485–7500 (2014)CrossRef C. Xu, R.A.D. Arancon, J. Labidi, R. Luque, Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem. Soc. Rev. 43, 7485–7500 (2014)CrossRef
12.
go back to reference M. Besson, P. Gallezot, C. Pinel, Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 114, 1827–1870 (2014)CrossRef M. Besson, P. Gallezot, C. Pinel, Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 114, 1827–1870 (2014)CrossRef
13.
go back to reference A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)CrossRef A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)CrossRef
14.
go back to reference J.B. Binder, R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979–1985 (2009)CrossRef J.B. Binder, R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979–1985 (2009)CrossRef
15.
go back to reference P.J. Deuss, K. Barta, From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord. Chem. Rev. 306, 510–532 (2016)CrossRef P.J. Deuss, K. Barta, From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord. Chem. Rev. 306, 510–532 (2016)CrossRef
16.
go back to reference M. Zaheer, R. Kempe, Catalytic hydrogenolysis of aryl ethers: a key step in lignin valorization to valuable chemicals. ACS Catal. 5, 1675–1684 (2015)CrossRef M. Zaheer, R. Kempe, Catalytic hydrogenolysis of aryl ethers: a key step in lignin valorization to valuable chemicals. ACS Catal. 5, 1675–1684 (2015)CrossRef
17.
go back to reference J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)CrossRef J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)CrossRef
18.
go back to reference M.V. Galkin, J.S.M. Samec, Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1–16 (2016)CrossRef M.V. Galkin, J.S.M. Samec, Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1–16 (2016)CrossRef
19.
go back to reference C. Espro, B. Gumina, T. Szumelda, E. Paone, F. Mauriello, Catalytic transfer hydrogenolysis as an effective tool for the reductive upgrading of cellulose, hemicellulose, lignin and their derived platform molecules. Catalysts 8(8), 313 (2018)CrossRef C. Espro, B. Gumina, T. Szumelda, E. Paone, F. Mauriello, Catalytic transfer hydrogenolysis as an effective tool for the reductive upgrading of cellulose, hemicellulose, lignin and their derived platform molecules. Catalysts 8(8), 313 (2018)CrossRef
20.
go back to reference E. Paone, T. Tabanelli, F. Mauriello, The rise of lignin biorefinery. Curr. Opin. Green Sustain. Chem. 24, 1–6 (2020)CrossRef E. Paone, T. Tabanelli, F. Mauriello, The rise of lignin biorefinery. Curr. Opin. Green Sustain. Chem. 24, 1–6 (2020)CrossRef
21.
go back to reference T. Tabanelli, E. Paone, P.B. Vàsquez, R. Pietropaolo, F. Cavani, F. Mauriello, Transfer hydrogenation of methyl and ethyl levulinate promoted by a ZrO2 catalyst: a comparison of batch vs continuous gas-flow conditions. ACS Sustain. Chem. Eng. 7, 9937–9947 (2019)CrossRef T. Tabanelli, E. Paone, P.B. Vàsquez, R. Pietropaolo, F. Cavani, F. Mauriello, Transfer hydrogenation of methyl and ethyl levulinate promoted by a ZrO2 catalyst: a comparison of batch vs continuous gas-flow conditions. ACS Sustain. Chem. Eng. 7, 9937–9947 (2019)CrossRef
22.
go back to reference M. Grilc, B. Likozar, J. Levec, Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts. Appl. Catal. B Environ. 150-151, 275–287 (2014)CrossRef M. Grilc, B. Likozar, J. Levec, Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts. Appl. Catal. B Environ. 150-151, 275–287 (2014)CrossRef
23.
go back to reference M. Grilc, B. Likozar, J. Levec, Simultaneous liquefaction and hydrodeoxygenation of lignocellulosic biomass over NiMo/Al2O3, Pd/Al2O3, and zeolite Y catalysts in hydrogen donor solvents. ChemCatChem 8, 180–191 (2015)CrossRef M. Grilc, B. Likozar, J. Levec, Simultaneous liquefaction and hydrodeoxygenation of lignocellulosic biomass over NiMo/Al2O3, Pd/Al2O3, and zeolite Y catalysts in hydrogen donor solvents. ChemCatChem 8, 180–191 (2015)CrossRef
24.
go back to reference Y. Zhang, H. Cao, J. Zhang, B. Xia, Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization. Solid State Ionics 177, 3303–3307 (2006)CrossRef Y. Zhang, H. Cao, J. Zhang, B. Xia, Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization. Solid State Ionics 177, 3303–3307 (2006)CrossRef
25.
go back to reference T.H. Cho, Y. Shiosaki, H. Noguchi, Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. J. Power Sources 159, 1322–1327 (2006)CrossRef T.H. Cho, Y. Shiosaki, H. Noguchi, Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. J. Power Sources 159, 1322–1327 (2006)CrossRef
26.
go back to reference C. Espro, B. Gumina, E. Paone, F. Mauriello, Upgrading lignocellulosic biomasses: hydrogenolysis of platform derived molecules promoted by heterogeneous Pd-Fe catalysts. Catalysts 7, 78 (2017)CrossRef C. Espro, B. Gumina, E. Paone, F. Mauriello, Upgrading lignocellulosic biomasses: hydrogenolysis of platform derived molecules promoted by heterogeneous Pd-Fe catalysts. Catalysts 7, 78 (2017)CrossRef
27.
go back to reference F. Mauriello, H. Ariga, M.G. Musolino, R. Pietropaolo, S. Takakusagi, K. Asakura, Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Appl. Catal. B Environ. 166–167, 121–131 (2015)CrossRef F. Mauriello, H. Ariga, M.G. Musolino, R. Pietropaolo, S. Takakusagi, K. Asakura, Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Appl. Catal. B Environ. 166–167, 121–131 (2015)CrossRef
28.
go back to reference F. Liao, T.W.B. Lo, S.C.E. Tsang, Recent developments in palladium-based bimetallic catalysts. ChemCatChem 7, 1998–2014 (2015)CrossRef F. Liao, T.W.B. Lo, S.C.E. Tsang, Recent developments in palladium-based bimetallic catalysts. ChemCatChem 7, 1998–2014 (2015)CrossRef
29.
go back to reference J. Liu, B. Sun, J. Hu, Y. Pei, H. Li, M. Qiao, Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: metal–support interaction and excellent intrinsic activity. J. Catal. 274, 287–295 (2010)CrossRef J. Liu, B. Sun, J. Hu, Y. Pei, H. Li, M. Qiao, Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: metal–support interaction and excellent intrinsic activity. J. Catal. 274, 287–295 (2010)CrossRef
30.
go back to reference M.G. Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo, Glycerol hydrogenolysis promoted by supported Palladium catalysts. ChemSusChem 4, 1143–1150 (2011)CrossRef M.G. Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo, Glycerol hydrogenolysis promoted by supported Palladium catalysts. ChemSusChem 4, 1143–1150 (2011)CrossRef
31.
go back to reference L.S.F. Feio, C.E. Hori, L.V. Mattos, D. Zanchet, F.B. Noronha, J.M.C. Bueno, Partial oxidation and autothermal reforming of methane on Pd/CeO2–Al2O3 catalysts. Appl. Catal. A Gen. 348, 183–192 (2008)CrossRef L.S.F. Feio, C.E. Hori, L.V. Mattos, D. Zanchet, F.B. Noronha, J.M.C. Bueno, Partial oxidation and autothermal reforming of methane on Pd/CeO2–Al2O3 catalysts. Appl. Catal. A Gen. 348, 183–192 (2008)CrossRef
32.
go back to reference G. Neri, G. Rizzo, L. De Luca, A. Donato, M.G. Musolino, R. Pietropaolo, Supported Pd catalysts for the hydrogenation of campholenic aldehyde: influence of support and preparation method. Appl. Catal. A Gen. 356, 113–120 (2009)CrossRef G. Neri, G. Rizzo, L. De Luca, A. Donato, M.G. Musolino, R. Pietropaolo, Supported Pd catalysts for the hydrogenation of campholenic aldehyde: influence of support and preparation method. Appl. Catal. A Gen. 356, 113–120 (2009)CrossRef
33.
go back to reference J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A 80, 333–341 (2007)CrossRef J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A 80, 333–341 (2007)CrossRef
34.
go back to reference H. Itoh, T. Sugimoto, Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interface Sci. 265, 283–295 (2003)CrossRef H. Itoh, T. Sugimoto, Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interface Sci. 265, 283–295 (2003)CrossRef
35.
go back to reference W. Voit, D.K. Kim, W. Zapka, M. Muhammed, K.V. Rao, Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. Mater. Res. Soc. 676, 781–786 (2001)CrossRef W. Voit, D.K. Kim, W. Zapka, M. Muhammed, K.V. Rao, Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. Mater. Res. Soc. 676, 781–786 (2001)CrossRef
36.
go back to reference International Center for Diffraction Data, Powder Diffraction Database. Pennsylvania, PA (1997). International Center for Diffraction Data, Powder Diffraction Database. Pennsylvania, PA (1997).
37.
go back to reference B.A. Sexton, A.E. Hughes, T.W. Turney, An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts. J. Catal. 97, 390–406 (1986)CrossRef B.A. Sexton, A.E. Hughes, T.W. Turney, An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts. J. Catal. 97, 390–406 (1986)CrossRef
38.
go back to reference T. Jiang, Q. Huai, T. Geng, W. Ying, T. Xiao, F. Cao, Catalytic performance of Pd-Ni bimetallic catalyst for glycerol hydrogenolysis. Biomass Bioenergy 78, 71–79 (2015)CrossRef T. Jiang, Q. Huai, T. Geng, W. Ying, T. Xiao, F. Cao, Catalytic performance of Pd-Ni bimetallic catalyst for glycerol hydrogenolysis. Biomass Bioenergy 78, 71–79 (2015)CrossRef
39.
go back to reference M.G. Musolino, C. Busacca, F. Mauriello, R. Pietropaolo, Aliphatic carbonyl reduction promoted by palladium catalysts under mild conditions. Appl. Catal. A Gen. 379, 77–86 (2010)CrossRef M.G. Musolino, C. Busacca, F. Mauriello, R. Pietropaolo, Aliphatic carbonyl reduction promoted by palladium catalysts under mild conditions. Appl. Catal. A Gen. 379, 77–86 (2010)CrossRef
40.
go back to reference D. Li, L. Zhang, H. Chen, L.-X. Ding, S. Wanga, H. Wang, Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chem. Commun. 51, 16045–16048 (2015)CrossRef D. Li, L. Zhang, H. Chen, L.-X. Ding, S. Wanga, H. Wang, Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chem. Commun. 51, 16045–16048 (2015)CrossRef
41.
go back to reference S. Nandi, P. Patel, N.H. Khan, A.V. Biradar, R.I. Kureshy, Nitrogen-rich graphitic-carbon stabilized cobalt nanoparticles for chemoselective hydrogenation of nitroarenes at milder conditions. Inorgan. Chem. Front. 5, 806–813 (2018)CrossRef S. Nandi, P. Patel, N.H. Khan, A.V. Biradar, R.I. Kureshy, Nitrogen-rich graphitic-carbon stabilized cobalt nanoparticles for chemoselective hydrogenation of nitroarenes at milder conditions. Inorgan. Chem. Front. 5, 806–813 (2018)CrossRef
42.
go back to reference Y. Yao, L.L. Gu, W. Jiang, H.C. Sun, Q. Su, J. Zhao, W.J. Ji, C.T. Au, Enhanced low temperature CO oxidation by pretreatment: specialty of the Au–Co3O4 oxide interfacial structures. Cat. Sci. Technol. 6, 2349–2360 (2016)CrossRef Y. Yao, L.L. Gu, W. Jiang, H.C. Sun, Q. Su, J. Zhao, W.J. Ji, C.T. Au, Enhanced low temperature CO oxidation by pretreatment: specialty of the Au–Co3O4 oxide interfacial structures. Cat. Sci. Technol. 6, 2349–2360 (2016)CrossRef
43.
go back to reference D. Scholz, C. Aellig, I. Hermans, Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl) furfural. ChemSusChem 7, 268–275 (2014)CrossRef D. Scholz, C. Aellig, I. Hermans, Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl) furfural. ChemSusChem 7, 268–275 (2014)CrossRef
44.
go back to reference A.J.R. Hensley, Y. Hong, R. Zhang, H. Zhang, J. Sun, Y. Wang, J.S. McEwen, Enhanced Fe2O3 reducibility via surface modification with pd: characterizing the synergy within Pd/Fe catalysts for hydrodeoxygenation reactions. ACS Catal. 4, 3381–3392 (2014)CrossRef A.J.R. Hensley, Y. Hong, R. Zhang, H. Zhang, J. Sun, Y. Wang, J.S. McEwen, Enhanced Fe2O3 reducibility via surface modification with pd: characterizing the synergy within Pd/Fe catalysts for hydrodeoxygenation reactions. ACS Catal. 4, 3381–3392 (2014)CrossRef
45.
go back to reference Q. Liu, L.-C. Wang, M. Chen, Y. Cao, H.-Y. He, K.-N. Fan, Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J. Catal. 263, 104–113 (2009)CrossRef Q. Liu, L.-C. Wang, M. Chen, Y. Cao, H.-Y. He, K.-N. Fan, Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J. Catal. 263, 104–113 (2009)CrossRef
46.
go back to reference F.B. Noronha, M. Schmal, C. Nicot, B. Moraweck, R. Fréty, Characterization of graphite-supported palladium–cobalt catalysts by temperature-programmed reduction and magnetic measurements. J. Catal. 168, 42–50 (1997)CrossRef F.B. Noronha, M. Schmal, C. Nicot, B. Moraweck, R. Fréty, Characterization of graphite-supported palladium–cobalt catalysts by temperature-programmed reduction and magnetic measurements. J. Catal. 168, 42–50 (1997)CrossRef
47.
go back to reference M.L. Cubeiro, J.L.G. Fierro, Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts. J. Catal. 179, 150–162 (1998)CrossRef M.L. Cubeiro, J.L.G. Fierro, Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts. J. Catal. 179, 150–162 (1998)CrossRef
48.
go back to reference X. Liu, Y. Zuo, L.P. Li, X.S. Huang, G.S. Li, Heterostructure NiO/Ce−xNixO2: synthesis and synergistic effect of simultaneous surface modification and internal doping for superior catalytic performance. RSC Adv. 4, 6397–6406 (2014)CrossRef X. Liu, Y. Zuo, L.P. Li, X.S. Huang, G.S. Li, Heterostructure NiO/Ce−xNixO2: synthesis and synergistic effect of simultaneous surface modification and internal doping for superior catalytic performance. RSC Adv. 4, 6397–6406 (2014)CrossRef
49.
go back to reference C. Song, J. Zhao, H. Li, S. Luo, Y. Tang, D. Wang, Design, controlled synthesis, and properties of 2D CeO2/NiO heterostructure assemblies. Cryst. Eng. Comm 19, 7339–7346 (2017)CrossRef C. Song, J. Zhao, H. Li, S. Luo, Y. Tang, D. Wang, Design, controlled synthesis, and properties of 2D CeO2/NiO heterostructure assemblies. Cryst. Eng. Comm 19, 7339–7346 (2017)CrossRef
50.
go back to reference Y.-S. Fenga, X.-Y. Lina, J. Hao, H.-J. Xu, Pd–Co bimetallic nanoparticles supported on graphene as a highly active catalyst for Suzuki–Miyaura and Sonogashira cross-coupling reactions. Tetrahedron 70, 5249–5253 (2014)CrossRef Y.-S. Fenga, X.-Y. Lina, J. Hao, H.-J. Xu, Pd–Co bimetallic nanoparticles supported on graphene as a highly active catalyst for Suzuki–Miyaura and Sonogashira cross-coupling reactions. Tetrahedron 70, 5249–5253 (2014)CrossRef
51.
go back to reference C.D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Minneapolis, MN, 1979) C.D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Minneapolis, MN, 1979)
52.
go back to reference B. Mierzwa, Z. Kaszkur, B. Moraweck, J. Pielaszek, In situ EXAFS study of the alloy catalyst Pd-Co (50%/50%)/SiO2. J. Alloys Compd. 286, 93–97 (1999)CrossRef B. Mierzwa, Z. Kaszkur, B. Moraweck, J. Pielaszek, In situ EXAFS study of the alloy catalyst Pd-Co (50%/50%)/SiO2. J. Alloys Compd. 286, 93–97 (1999)CrossRef
53.
go back to reference M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 41, 324–332 (2009)CrossRef M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 41, 324–332 (2009)CrossRef
54.
go back to reference N. Seshu Babu, N. Lingaiah, P.S. Sai Prasad, Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene. Appl. Catal. B Environ. 111−112, 309–316 (2012)CrossRef N. Seshu Babu, N. Lingaiah, P.S. Sai Prasad, Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene. Appl. Catal. B Environ. 111−112, 309–316 (2012)CrossRef
55.
go back to reference L. Chen, H. Guo, T. Fujita, A. Hirata, W. Zhang, A. Inoue, M. Chen, Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions. Adv. Funct. Mater. 21, 4364–4370 (2011)CrossRef L. Chen, H. Guo, T. Fujita, A. Hirata, W. Zhang, A. Inoue, M. Chen, Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions. Adv. Funct. Mater. 21, 4364–4370 (2011)CrossRef
56.
go back to reference F. Liao, T.W.B. Lo, J. Qu, A. Kroner, A. Dent, S.C.E. Tsang, Tunability of catalytic properties of Pd-based catalysts by rational control of strong metal and support interaction (SMSI) for selective hydrogenolyic C–C and C–O bond cleavage of ethylene glycol units in biomass molecules. Cat. Sci. Technol. 5, 3491–3495 (2015)CrossRef F. Liao, T.W.B. Lo, J. Qu, A. Kroner, A. Dent, S.C.E. Tsang, Tunability of catalytic properties of Pd-based catalysts by rational control of strong metal and support interaction (SMSI) for selective hydrogenolyic C–C and C–O bond cleavage of ethylene glycol units in biomass molecules. Cat. Sci. Technol. 5, 3491–3495 (2015)CrossRef
57.
go back to reference L. Nguyen, S. Zhang, L. Wang, Y. Li, H. Yoshida, A. Patlolla, A.I. Frenkel, S. Takeda, F.F. Tao, Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS Catal. 6, 840–850 (2016)CrossRef L. Nguyen, S. Zhang, L. Wang, Y. Li, H. Yoshida, A. Patlolla, A.I. Frenkel, S. Takeda, F.F. Tao, Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS Catal. 6, 840–850 (2016)CrossRef
58.
go back to reference J.K. Kim, J.K. Lee, K.H. Kang, J.W. Lee, I.K. Song, Catalytic decomposition of phenethyl phenyl ether to aromatics over Pd–Fe bimetallic catalysts supported on ordered mesoporous carbon. J. Mol. Catal. A Chem. 410, 184–192 (2015)CrossRef J.K. Kim, J.K. Lee, K.H. Kang, J.W. Lee, I.K. Song, Catalytic decomposition of phenethyl phenyl ether to aromatics over Pd–Fe bimetallic catalysts supported on ordered mesoporous carbon. J. Mol. Catal. A Chem. 410, 184–192 (2015)CrossRef
59.
go back to reference J.K. Kim, J.K. Lee, K.H. Kang, J.W. Lee, I.K. Song, Selective cleavage of CO bond in benzyl phenyl ether to aromatics over Pd–Fe bimetallic catalyst supported on ordered mesoporous carbon. Appl. Catal. A Gen. 498, 142–149 (2015)CrossRef J.K. Kim, J.K. Lee, K.H. Kang, J.W. Lee, I.K. Song, Selective cleavage of CO bond in benzyl phenyl ether to aromatics over Pd–Fe bimetallic catalyst supported on ordered mesoporous carbon. Appl. Catal. A Gen. 498, 142–149 (2015)CrossRef
60.
go back to reference B. Gumina, F. Mauriello, R. Pietropaolo, S. Galvagno, C. Espro, Hydrogenolysis of sorbitol into valuable C3-C2 alcohols at low H2 pressure promoted by the heterogeneous Pd/Fe3O4 catalyst. Mol. Catal. 446, 152–160 (2018)CrossRef B. Gumina, F. Mauriello, R. Pietropaolo, S. Galvagno, C. Espro, Hydrogenolysis of sorbitol into valuable C3-C2 alcohols at low H2 pressure promoted by the heterogeneous Pd/Fe3O4 catalyst. Mol. Catal. 446, 152–160 (2018)CrossRef
61.
go back to reference J. Sun, A.M. Karim, H. Zhang, L. Kovarik, X.S. Li, A.J. Hensley, J.-S. McEwen, Y. Wang, Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J. Catal. 306, 47–57 (2013)CrossRef J. Sun, A.M. Karim, H. Zhang, L. Kovarik, X.S. Li, A.J. Hensley, J.-S. McEwen, Y. Wang, Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J. Catal. 306, 47–57 (2013)CrossRef
62.
go back to reference Y. Hong, H. Zhang, J. Sun, K.M. Ayman, A.J.R. Hensley, M. Gu, M.H. Engelhard, J.-S. McEwen, Y. Wang, Synergistic catalysis between Pd and Fe in gas phase dydrodeoxygenation of m-cresol. ACS Catal. 4, 3335–3345 (2014)CrossRef Y. Hong, H. Zhang, J. Sun, K.M. Ayman, A.J.R. Hensley, M. Gu, M.H. Engelhard, J.-S. McEwen, Y. Wang, Synergistic catalysis between Pd and Fe in gas phase dydrodeoxygenation of m-cresol. ACS Catal. 4, 3335–3345 (2014)CrossRef
63.
go back to reference A.J.R. Hensley, R. Zhang, Y. Wang, J.-S. McEwen, Tailoring the adsorption of benzene on PdFe surfaces: a density functional theory study. J. Phys. Chem. C 117, 24317–24328 (2013)CrossRef A.J.R. Hensley, R. Zhang, Y. Wang, J.-S. McEwen, Tailoring the adsorption of benzene on PdFe surfaces: a density functional theory study. J. Phys. Chem. C 117, 24317–24328 (2013)CrossRef
64.
go back to reference N. Mahata, V. Vishwanathan, Gas phase hydrogenation of phenol over supported palladium catalysts. Catal. Today 49, 65–69 (1999)CrossRef N. Mahata, V. Vishwanathan, Gas phase hydrogenation of phenol over supported palladium catalysts. Catal. Today 49, 65–69 (1999)CrossRef
65.
go back to reference F. Mauriello, A. Vinci, C. Espro, B. Gumina, M.G. Musolino, R. Pietropaolo, Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst. Cat. Sci. Technol. 5, 4466–4473 (2015)CrossRef F. Mauriello, A. Vinci, C. Espro, B. Gumina, M.G. Musolino, R. Pietropaolo, Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst. Cat. Sci. Technol. 5, 4466–4473 (2015)CrossRef
66.
go back to reference D. Cozzula, A. Vinci, F. Mauriello, R. Pietropaolo, T.E. Müller, Directing the cleavage of ester C−O bonds by controlling the hydrogen availability on the surface of coprecipitated Pd/Fe3O4. ChemCatChem 8, 1515–1522 (2016)CrossRef D. Cozzula, A. Vinci, F. Mauriello, R. Pietropaolo, T.E. Müller, Directing the cleavage of ester C−O bonds by controlling the hydrogen availability on the surface of coprecipitated Pd/Fe3O4. ChemCatChem 8, 1515–1522 (2016)CrossRef
67.
go back to reference H. Bernas, A. Taskinen, J. Wärnå, D.Y. Murzin, Describing the inverse dependence of hydrogen pressure by multi-site adsorption of the reactant: hydrogenolysis of hydroxymatairesinol on a Pd/C catalyst. J. Mol. Catal. A Chem. 306, 33–39 (2009)CrossRef H. Bernas, A. Taskinen, J. Wärnå, D.Y. Murzin, Describing the inverse dependence of hydrogen pressure by multi-site adsorption of the reactant: hydrogenolysis of hydroxymatairesinol on a Pd/C catalyst. J. Mol. Catal. A Chem. 306, 33–39 (2009)CrossRef
68.
go back to reference G.W. Huber, J.W. Shabaker, S.T. Evans, J.A. Dumesic, Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl. Catal. B Environ. 62, 226–235 (2006)CrossRef G.W. Huber, J.W. Shabaker, S.T. Evans, J.A. Dumesic, Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl. Catal. B Environ. 62, 226–235 (2006)CrossRef
69.
go back to reference P. Panagiotopoulou, N. Martin, D.G. Vlachos, Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. J. Mol. Catal. A Chem. 392, 223–228 (2014)CrossRef P. Panagiotopoulou, N. Martin, D.G. Vlachos, Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. J. Mol. Catal. A Chem. 392, 223–228 (2014)CrossRef
70.
go back to reference N.S.M. Bertero, A.F. Trasarti, C.R. Apesteguía, A.J. Marchi, Solvent effect in the liquid-phase hydrogenation of acetophenone over Ni/SiO2: a comprehensive study of the phenomenon. Appl. Catal. A Gen. 394, 228–238 (2011)CrossRef N.S.M. Bertero, A.F. Trasarti, C.R. Apesteguía, A.J. Marchi, Solvent effect in the liquid-phase hydrogenation of acetophenone over Ni/SiO2: a comprehensive study of the phenomenon. Appl. Catal. A Gen. 394, 228–238 (2011)CrossRef
71.
go back to reference J. He, C. Zhao, J.A. Lercher, Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 134, 20768–20775 (2012)CrossRef J. He, C. Zhao, J.A. Lercher, Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 134, 20768–20775 (2012)CrossRef
72.
go back to reference Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)CrossRef Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)CrossRef
73.
go back to reference Y.S. Choi, R. Singh, J. Zhang, G. Balasubramanian, M.R. Sturgeon, R. Katahira, G. Chupka, G.T. Beckham, B.H. Shanks, Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds. Green Chem. 18, 1762–1773 (2016)CrossRef Y.S. Choi, R. Singh, J. Zhang, G. Balasubramanian, M.R. Sturgeon, R. Katahira, G. Chupka, G.T. Beckham, B.H. Shanks, Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds. Green Chem. 18, 1762–1773 (2016)CrossRef
74.
go back to reference F. Mauriello, H. Ariga-Miwa, E. Paone, R. Pietropaolo, S. Takakusagi, K. Asakura, Transfer hydrogenolysis of aromatic ethers promoted by the bimetallic Pd/Co catalyst. Catal. Today (2019) F. Mauriello, H. Ariga-Miwa, E. Paone, R. Pietropaolo, S. Takakusagi, K. Asakura, Transfer hydrogenolysis of aromatic ethers promoted by the bimetallic Pd/Co catalyst. Catal. Today (2019)
75.
go back to reference E. Paone, C. Espro, R. Pietropaolo, F. Mauriello, Selective arene production from transfer hydrogenolysis of benzyl phenyl ether promoted by a co-precipitated Pd/Fe3O4 catalyst. Cat. Sci. Technol. 6, 7937–7941 (2016)CrossRef E. Paone, C. Espro, R. Pietropaolo, F. Mauriello, Selective arene production from transfer hydrogenolysis of benzyl phenyl ether promoted by a co-precipitated Pd/Fe3O4 catalyst. Cat. Sci. Technol. 6, 7937–7941 (2016)CrossRef
76.
go back to reference E. Dorrestijn, L.J.J. Laarhoven, I.W.C.E. Arends, P. Mulder, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 54, 153–192 (2000)CrossRef E. Dorrestijn, L.J.J. Laarhoven, I.W.C.E. Arends, P. Mulder, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 54, 153–192 (2000)CrossRef
77.
go back to reference R. Parthasarathi, R.A. Romero, A. Redondo, S. Gnanakaran, Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2, 2660–2666 (2011)CrossRef R. Parthasarathi, R.A. Romero, A. Redondo, S. Gnanakaran, Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2, 2660–2666 (2011)CrossRef
78.
go back to reference S. De, J. Zhang, R. Luque, N. Yan, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 9, 3314–3347 (2016)CrossRef S. De, J. Zhang, R. Luque, N. Yan, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 9, 3314–3347 (2016)CrossRef
79.
go back to reference A.G. Sergeev, J.F. Hartwig, Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332, 439–443 (2011)CrossRef A.G. Sergeev, J.F. Hartwig, Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332, 439–443 (2011)CrossRef
80.
go back to reference A.G. Sergeev, J.D. Webb, J.F. Hartwig, A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J. Am. Chem. Soc. 134, 20226–20229 (2012)CrossRef A.G. Sergeev, J.D. Webb, J.F. Hartwig, A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J. Am. Chem. Soc. 134, 20226–20229 (2012)CrossRef
81.
go back to reference J. He, L. Lu, C. Zhao, D. Mei, J.A. Lercher, Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases. J. Catal. 311, 41–51 (2014)CrossRef J. He, L. Lu, C. Zhao, D. Mei, J.A. Lercher, Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases. J. Catal. 311, 41–51 (2014)CrossRef
82.
go back to reference J. He, L. Lu, C. Zhao, D. Mei, J.A. Lercher, Mechanisms of selective cleavage of C–O bonds in di-aryl ethers in aqueous phase. J. Catal. 309, 280–290 (2014)CrossRef J. He, L. Lu, C. Zhao, D. Mei, J.A. Lercher, Mechanisms of selective cleavage of C–O bonds in di-aryl ethers in aqueous phase. J. Catal. 309, 280–290 (2014)CrossRef
83.
go back to reference Q. Song, F. Wang, J. Xu, Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem. Commun. 48, 7019–7021 (2012)CrossRef Q. Song, F. Wang, J. Xu, Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem. Commun. 48, 7019–7021 (2012)CrossRef
84.
go back to reference J. Zhang, H. Asakura, J. van Rijn, J. Yang, P. Duchesne, B. Zhang, X. Chen, P. Zhang, M. Saeys, N. Yan, Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem. 16, 2432–2437 (2014)CrossRef J. Zhang, H. Asakura, J. van Rijn, J. Yang, P. Duchesne, B. Zhang, X. Chen, P. Zhang, M. Saeys, N. Yan, Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem. 16, 2432–2437 (2014)CrossRef
85.
go back to reference J. Zhang, J. Teo, X. Chen, H. Asakura, T. Tanaka, K. Teramura, N. Yan, A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal. 4, 1574–1583 (2014)CrossRef J. Zhang, J. Teo, X. Chen, H. Asakura, T. Tanaka, K. Teramura, N. Yan, A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal. 4, 1574–1583 (2014)CrossRef
86.
go back to reference X. Cui, H. Yuan, K. Junge, C. Topf, M. Beller, F. Shi, A stable and practical nickel catalyst for the hydrogenolysis of C–O bonds. Green Chem. 19, 305–310 (2017)CrossRef X. Cui, H. Yuan, K. Junge, C. Topf, M. Beller, F. Shi, A stable and practical nickel catalyst for the hydrogenolysis of C–O bonds. Green Chem. 19, 305–310 (2017)CrossRef
87.
go back to reference M.M. Ambursa, P. Sudarsanam, L. HweiVoon, S.B.A. Hamid, S.K. Bhargava, Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels. Fuel Process. Technol. 162, 87–97 (2017)CrossRef M.M. Ambursa, P. Sudarsanam, L. HweiVoon, S.B.A. Hamid, S.K. Bhargava, Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels. Fuel Process. Technol. 162, 87–97 (2017)CrossRef
88.
go back to reference J.-W. Zhang, Y. Cai, G.-P. Lu, C. Cai, Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd-Ni bimetallic nanoparticles supported on ZrO2. Green Chem. 18, 6229–6235 (2016)CrossRef J.-W. Zhang, Y. Cai, G.-P. Lu, C. Cai, Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd-Ni bimetallic nanoparticles supported on ZrO2. Green Chem. 18, 6229–6235 (2016)CrossRef
89.
go back to reference K.-K. Sun, G.-P. Lu, J.-W. Zhang, C. Cai, Selective hydrogenolysis of C-O bonds in lignin model compounds by Pd-Ni bimetallic nanoparticles in ionic liquids. Dalton Trans. 46, 11884–11889 (2017)CrossRef K.-K. Sun, G.-P. Lu, J.-W. Zhang, C. Cai, Selective hydrogenolysis of C-O bonds in lignin model compounds by Pd-Ni bimetallic nanoparticles in ionic liquids. Dalton Trans. 46, 11884–11889 (2017)CrossRef
90.
go back to reference J.-W. Zhang, G.-P. Lu, C. Cai, Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd-Ni BMNPs. Green Chem. 19, 4538–4543 (2017)CrossRef J.-W. Zhang, G.-P. Lu, C. Cai, Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd-Ni BMNPs. Green Chem. 19, 4538–4543 (2017)CrossRef
91.
go back to reference X. Wang, R. Rinaldi, Exploiting H-transfer reactions with RANEY®Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions. Energy Environ. Sci. 5, 8244–8260 (2012)CrossRef X. Wang, R. Rinaldi, Exploiting H-transfer reactions with RANEY®Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions. Energy Environ. Sci. 5, 8244–8260 (2012)CrossRef
92.
go back to reference X. Wang, R. Rinaldi, A route for lignin and bio-oil conversion: dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew. Chem. Int. Ed. 52, 11499–11503 (2013)CrossRef X. Wang, R. Rinaldi, A route for lignin and bio-oil conversion: dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew. Chem. Int. Ed. 52, 11499–11503 (2013)CrossRef
93.
go back to reference X. Wang, R. Rinaldi, Solvent effects on the hydrogenolysis of diphenyl ether with raney nickel and their implications for the conversion of lignin. ChemSusChem 5, 1455–1466 (2012)CrossRef X. Wang, R. Rinaldi, Solvent effects on the hydrogenolysis of diphenyl ether with raney nickel and their implications for the conversion of lignin. ChemSusChem 5, 1455–1466 (2012)CrossRef
94.
go back to reference X. Wang, R. Rinaldi, Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catal. Today 269, 48–55 (2016)CrossRef X. Wang, R. Rinaldi, Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catal. Today 269, 48–55 (2016)CrossRef
95.
go back to reference F. Mauriello, E. Paone, R. Pietropaolo, A.M. Balu, R. Luque, Catalytic transfer hydrogenolysis of lignin-derived aromatic ethers promoted by bimetallic Pd/Ni systems. ACS Sustain. Chem. Eng. 6, 9269–9276 (2018)CrossRef F. Mauriello, E. Paone, R. Pietropaolo, A.M. Balu, R. Luque, Catalytic transfer hydrogenolysis of lignin-derived aromatic ethers promoted by bimetallic Pd/Ni systems. ACS Sustain. Chem. Eng. 6, 9269–9276 (2018)CrossRef
96.
go back to reference C.M. Friend, E.L. Muetterties, Coordination chemistry of metal surfaces. 3. Benzene and toluene interactions with nickel surfaces. J. Am. Chem. Soc. 103, 173–779 (1981) C.M. Friend, E.L. Muetterties, Coordination chemistry of metal surfaces. 3. Benzene and toluene interactions with nickel surfaces. J. Am. Chem. Soc. 103, 173–779 (1981)
Metadata
Title
Nanostructured Bimetallic Pd-based Catalysts for the Valorization of Lignocellulosic Biomasses
Authors
Emilia Paone
Francesco Mauriello
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-58934-9_5

Premium Partners