Skip to main content
Top

2005 | OriginalPaper | Chapter

Nanotribology of Ultrathin and Hard Amorphous Carbon Films

Author : Bharat Bhushan

Published in: Nanotribology and Nanomechanics

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Diamond material and its smooth coatings are used for very low wear and relatively low friction. Major limitations of the true diamond coatings are that they need to be deposited at high temperatures, can only be deposited on selected substrates, and require surface finishing. Hard amorphous carbon, commonly known as diamond-like carbon or DLC coatings, exhibit mechanical, thermal, and optical properties close to that of diamond. These can be deposited with a large range of thicknesses by using a variety of deposition processes on a variety of substrates at or near room temperature. The coatings reproduce substrate topography, avoiding the need of post-finishing. Friction and wear properties of some DLC coatings can be very attractive for tribological applications. The largest industrial application of these coatings is in magnetic storage devices.

The prevailing atomic arrangement in the DLC coatings is amorphous or quasi-amorphous with small diamond, graphite, and other unidentifiable micro- or nanocrystallites. Most DLC coatings, except those produced by filtered cathodic arc, contain from a few to about 50 at% hydrogen. Sometimes hydrogen is deliberately incorporated in the sputtered and ion plated coatings to tailor their properties.

EELS and Raman spectroscopies can be successfully used for chemical characterization of amorphous carbon coatings. The prevailing atomic arrangement in the DLC coatings is amorphous or quasi-amorphous with small diamond (

sp

3

), graphite (

sp

2

) and other unidentifiable micro- or nanocrystallites. Most DLC coatings except those produced by filtered cathodic arc contain from a few to about 50 at% hydrogen. Sometimes hydrogen is deliberately incorporated in the sputtered and ion plated coatings to tailor their properties.

Amorphous carbon coatings deposited by various techniques exhibit different mechanical and tribological properties. The nanoindenter can be successfully used for measurement of hardness, elastic modulus, fracture toughness, and fatigue life. Microscratch and microwear experiments can be performed using either a nanoindenter or an AFM. Thin coatings deposited by filtered cathodic arc, ion beam, and ECR-CVD hold a promise for tribological applications. Coatings as thin as 5 nm or even thinner provide wear protection. Microscratch, microwear, and accelerated wear testing, if simulated properly, can be successfully used to screen coating candidates for industrial applications. In the examples shown in this chapter, trends observed in the microscratch, microwear, and accelerated macrofriction wear tests are similar to that found in functional tests.

In this chapter, the state-of-the-art of recent developments in the chemical, mechanical, and tribological characterization of ultrathin amorphous carbon coatings is presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Metadata
Title
Nanotribology of Ultrathin and Hard Amorphous Carbon Films
Author
Bharat Bhushan
Copyright Year
2005
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/3-540-28248-3_17

Premium Partners