Skip to main content
Top

2011 | OriginalPaper | Chapter

23. Natural Fibre-Reinforced Polymer Composites and Nanocomposites for Automotive Applications

Authors : James Njuguna, Paul Wambua, Krzysztof Pielichowski, Kambiz Kayvantash

Published in: Cellulose Fibers: Bio- and Nano-Polymer Composites

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Natural fibre-reinforced composites have recently received much attention because of their attractive properties such as lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable. This chapter examines the applications of natural fibre-reinforced composites and nanocomposites in automotive structural applications. Various applied and promising natural fibre-reinforced composites and nanocomposites including flax, hemp, kenaf, wood, pineapple, banana and sisal are presented. Key determinants to performance-specific properties of natural fibre-reinforced composites are discussed in detail. These include fibre–matrix adhesion, fibre mechanical properties, moisture, impact and fatigue, thermal stability and preparation of fibre-reinforced composites. The chapter further looks into lightweight component manufacturing techniques including their potentials and limitations. Examples of current applications are given, and future trends are outlined while addressing the main drawbacks faced by these composites to lightweight components or vehicle manufacturing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mouti Z, Westwood K, Kayvantash K et al (2010) Low velocity impact behavior of glass filled fiber-reinforced thermoplastic engine components. Materials 3:2463–2473CrossRef Mouti Z, Westwood K, Kayvantash K et al (2010) Low velocity impact behavior of glass filled fiber-reinforced thermoplastic engine components. Materials 3:2463–2473CrossRef
2.
go back to reference Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRef Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRef
3.
go back to reference Wambua PM (2004) Protective low price composite materials based on natural fibres. PhD thesis, Katholieke Universiteit Leuven, Belgium Wambua PM (2004) Protective low price composite materials based on natural fibres. PhD thesis, Katholieke Universiteit Leuven, Belgium
4.
go back to reference Lee SC, Mariatti M (2008) The effect of bagasse fibers obtained (from rind and pith component) on the properties of unsaturated polyester composites. Mater Lett 62:2253–2256CrossRef Lee SC, Mariatti M (2008) The effect of bagasse fibers obtained (from rind and pith component) on the properties of unsaturated polyester composites. Mater Lett 62:2253–2256CrossRef
5.
go back to reference Jústiz-Smith NG, Virgo GJ, Buchanan VE (2008) Potential of jamaican banana, coconut coir and bagasse fibres as composite materials. Mater Charact 59:1273–1278CrossRef Jústiz-Smith NG, Virgo GJ, Buchanan VE (2008) Potential of jamaican banana, coconut coir and bagasse fibres as composite materials. Mater Charact 59:1273–1278CrossRef
6.
go back to reference Reed AR, Williams PT (2003) Thermal processing of biomass natural fibre wastes by pyrolysis. Int J Energy Res 28:131–145CrossRef Reed AR, Williams PT (2003) Thermal processing of biomass natural fibre wastes by pyrolysis. Int J Energy Res 28:131–145CrossRef
7.
go back to reference Cahn RW (1990) Encyclopedia of materials science and engineering supplementary. Pergamon Press, Oxford Cahn RW (1990) Encyclopedia of materials science and engineering supplementary. Pergamon Press, Oxford
8.
go back to reference Hamad W (2002) Cellulosic materials: fibers, networks, and composites. Kluwer Academic Publishers, The Netherlands Hamad W (2002) Cellulosic materials: fibers, networks, and composites. Kluwer Academic Publishers, The Netherlands
9.
go back to reference Bos HL, Van Den Oever MJA, Peters OCJJ (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692CrossRef Bos HL, Van Den Oever MJA, Peters OCJJ (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692CrossRef
10.
go back to reference Bhat GS (1995) Nonwovens as three-dimensional textiles for composites. Mater Manuf Process 10:667–688CrossRef Bhat GS (1995) Nonwovens as three-dimensional textiles for composites. Mater Manuf Process 10:667–688CrossRef
11.
go back to reference John MJ, Anandjiwala RD (2009) Chemical modification of flax reinforced polypropylene composites. Compos A 40:442–448CrossRef John MJ, Anandjiwala RD (2009) Chemical modification of flax reinforced polypropylene composites. Compos A 40:442–448CrossRef
12.
go back to reference Beckermann GW, Pickering KL (2009) Engineering and evaluation of hemp fibre reinforced polypropylene composites: micro-mechanics and strength prediction modelling. Compos A 40:210–217CrossRef Beckermann GW, Pickering KL (2009) Engineering and evaluation of hemp fibre reinforced polypropylene composites: micro-mechanics and strength prediction modelling. Compos A 40:210–217CrossRef
13.
go back to reference Mohanty AK, Wibowo A, Misra M et al (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A 35:363–370CrossRef Mohanty AK, Wibowo A, Misra M et al (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A 35:363–370CrossRef
14.
go back to reference Van Voorn B, Smit HHG, Sinke RJ et al (2001) Natural fibre reinforced sheet moulding compound. Compos A 32:1271–1279CrossRef Van Voorn B, Smit HHG, Sinke RJ et al (2001) Natural fibre reinforced sheet moulding compound. Compos A 32:1271–1279CrossRef
15.
go back to reference Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crop Prod 8:105–112CrossRef Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crop Prod 8:105–112CrossRef
16.
go back to reference Mehta G, Drzal LT, Mohanty AK et al (2006) Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J Appl Polym Sci 99:1055–1068CrossRef Mehta G, Drzal LT, Mohanty AK et al (2006) Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J Appl Polym Sci 99:1055–1068CrossRef
17.
go back to reference Mitchell AJ (1986) Composites of commercial wood pulp fibres and cement. Appita J 30:229 Mitchell AJ (1986) Composites of commercial wood pulp fibres and cement. Appita J 30:229
18.
go back to reference Nishino T, Hirao K, Kotera M et al (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286CrossRef Nishino T, Hirao K, Kotera M et al (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286CrossRef
19.
go back to reference Zampaloni M, Pourboghrat F, Yankovich SA et al (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos A 38:1569–1580CrossRef Zampaloni M, Pourboghrat F, Yankovich SA et al (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos A 38:1569–1580CrossRef
20.
go back to reference Shebani AN, van Reenen AJ, Meincken M (2008) The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta 471:43–50CrossRef Shebani AN, van Reenen AJ, Meincken M (2008) The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta 471:43–50CrossRef
21.
go back to reference Maldas D, Kokta BV, Daneault C (1989) Thermoplastic composites of polystyrene: effect of different wood species on mechanical properties. J Appl Polym Sci 38:413–439CrossRef Maldas D, Kokta BV, Daneault C (1989) Thermoplastic composites of polystyrene: effect of different wood species on mechanical properties. J Appl Polym Sci 38:413–439CrossRef
22.
go back to reference Lu JZ, Wu Q, Negulescu II (2005) Wood-fiber/high-density-polyethylene composites: coupling agent performance. J Appl Polym Sci 96:93–102CrossRef Lu JZ, Wu Q, Negulescu II (2005) Wood-fiber/high-density-polyethylene composites: coupling agent performance. J Appl Polym Sci 96:93–102CrossRef
23.
go back to reference Michell AJ (1986) Composites containing wood pulp fibres. Appita 39:223–229 Michell AJ (1986) Composites containing wood pulp fibres. Appita 39:223–229
24.
go back to reference Beg MDH, Pickering KL (2008) Mechanical performance of kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos A 39:1748–1755CrossRef Beg MDH, Pickering KL (2008) Mechanical performance of kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos A 39:1748–1755CrossRef
25.
go back to reference McKenzie AW, Yuritta JP (1979) Wood fiber reinforced polymers. Appita 32:460–465 McKenzie AW, Yuritta JP (1979) Wood fiber reinforced polymers. Appita 32:460–465
26.
go back to reference Bhattacharyya D, Bowis M, Jayaraman K (2003) Thermoforming woodfibre-polypropylene composite sheets. Compos Sci Technol 63:353–365CrossRef Bhattacharyya D, Bowis M, Jayaraman K (2003) Thermoforming woodfibre-polypropylene composite sheets. Compos Sci Technol 63:353–365CrossRef
27.
go back to reference George J, Sreekala MS, Thomas S et al (1998) Stress relaxation behavior of short pineapple fiber reinforced polyethylene composites. J Reinforc Plast Compos 17:651–672 George J, Sreekala MS, Thomas S et al (1998) Stress relaxation behavior of short pineapple fiber reinforced polyethylene composites. J Reinforc Plast Compos 17:651–672
28.
go back to reference George J, Bhagawan SS, Prabhakaran N et al (1995) Short pineapple-leaf-fiber-reinforced low-density polyethylene composites. J Appl Polym Sci 57:843–854CrossRef George J, Bhagawan SS, Prabhakaran N et al (1995) Short pineapple-leaf-fiber-reinforced low-density polyethylene composites. J Appl Polym Sci 57:843–854CrossRef
29.
go back to reference Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly ‘green’ composites made from pineapple leaf fibers and poly(hydroxybutyrate-co-valerate) resin. Polym Compos 20:367–378CrossRef Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly ‘green’ composites made from pineapple leaf fibers and poly(hydroxybutyrate-co-valerate) resin. Polym Compos 20:367–378CrossRef
30.
go back to reference Arib RMN, Sapuan SM, Ahmad MMHM et al (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27:391–396CrossRef Arib RMN, Sapuan SM, Ahmad MMHM et al (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27:391–396CrossRef
31.
go back to reference Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites. Compos Sci Technol 63:1231–1240CrossRef Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites. Compos Sci Technol 63:1231–1240CrossRef
32.
go back to reference Elanthikkal S, Gopalakrishnapanicker U, Varghese S et al (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRef Elanthikkal S, Gopalakrishnapanicker U, Varghese S et al (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRef
33.
go back to reference Sreekumar PA, Albert F, Unnikrishnan G et al (2008) Mechanical and water sorption studies of ecofriendly banana fiber-reinforced polyester composites fabricated by RTM. J Appl Polym Sci 109:1547–1555CrossRef Sreekumar PA, Albert F, Unnikrishnan G et al (2008) Mechanical and water sorption studies of ecofriendly banana fiber-reinforced polyester composites fabricated by RTM. J Appl Polym Sci 109:1547–1555CrossRef
34.
go back to reference Liu H, Wu Q, Zhang Q (2009) Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. Bioresour Technol 100:6088–6097CrossRef Liu H, Wu Q, Zhang Q (2009) Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. Bioresour Technol 100:6088–6097CrossRef
35.
go back to reference Agarwal R, Saxena NS, Sharma KB et al (2003) Thermal conduction and diffusion through glass-banana fiber polyester composites. Indian J Pure Appl Phys 41:448–452 Agarwal R, Saxena NS, Sharma KB et al (2003) Thermal conduction and diffusion through glass-banana fiber polyester composites. Indian J Pure Appl Phys 41:448–452
36.
go back to reference Annie Paul S, Boudenne A, Ibos L et al (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos A 39:1582–1588CrossRef Annie Paul S, Boudenne A, Ibos L et al (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos A 39:1582–1588CrossRef
37.
go back to reference Li Y, Mai Y, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055CrossRef Li Y, Mai Y, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055CrossRef
38.
go back to reference Gordon JE, Jeronimidis G (1980) Composites with high work of fracture. Philos Trans R Soc Lond A Math Phys Sci 294:545–550CrossRef Gordon JE, Jeronimidis G (1980) Composites with high work of fracture. Philos Trans R Soc Lond A Math Phys Sci 294:545–550CrossRef
39.
go back to reference Joseph K, Thomas S, Pavithran C (1995) Effect of ageing on the physical and mechanical properties of sisal-fiber-reinforced polyethylene composites. Compos Sci Technol 53:99–110CrossRef Joseph K, Thomas S, Pavithran C (1995) Effect of ageing on the physical and mechanical properties of sisal-fiber-reinforced polyethylene composites. Compos Sci Technol 53:99–110CrossRef
40.
go back to reference Gauthier R, Joly C, Coupas AC et al (1998) Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos 19:287–300CrossRef Gauthier R, Joly C, Coupas AC et al (1998) Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos 19:287–300CrossRef
41.
go back to reference George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485CrossRef George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485CrossRef
42.
go back to reference Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRef Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRef
43.
go back to reference Abdelmouleh M, Boufi S, Belgacem MN et al (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24:43–54CrossRef Abdelmouleh M, Boufi S, Belgacem MN et al (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24:43–54CrossRef
44.
go back to reference Mishra S, Naik JB, Patil YP (2000) The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos Sci Technol 60:1729–1735CrossRef Mishra S, Naik JB, Patil YP (2000) The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos Sci Technol 60:1729–1735CrossRef
45.
go back to reference Dash BN, Rana AK, Mishra HK et al (1999) Novel, low-cost jute-polyester composites. part 1: processing, mechanical properties, and SEM analysis. Polym Compos 20:62–71CrossRef Dash BN, Rana AK, Mishra HK et al (1999) Novel, low-cost jute-polyester composites. part 1: processing, mechanical properties, and SEM analysis. Polym Compos 20:62–71CrossRef
46.
go back to reference Hwang SJ, Gibson RF (1992) Use of strain energy-based finite element techniques in the analysis of various aspects of damping of composite materials and structures. J Compos Mater 26:2585–2605CrossRef Hwang SJ, Gibson RF (1992) Use of strain energy-based finite element techniques in the analysis of various aspects of damping of composite materials and structures. J Compos Mater 26:2585–2605CrossRef
47.
go back to reference Gassan J (2002) A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Compos A 33:369–374CrossRef Gassan J (2002) A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Compos A 33:369–374CrossRef
48.
go back to reference Pielichowski K, Njuguna J (2005) Thermal degradation of polymeric materials. RAPRA Technologies Limited, Shawbury, Surrey Pielichowski K, Njuguna J (2005) Thermal degradation of polymeric materials. RAPRA Technologies Limited, Shawbury, Surrey
49.
go back to reference Pandey JK, Raghunatha Reddy K, Pratheep Kumar A et al (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250CrossRef Pandey JK, Raghunatha Reddy K, Pratheep Kumar A et al (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250CrossRef
50.
go back to reference Wielage B, Lampke T, Marx G et al (1999) Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta 337:169–177CrossRef Wielage B, Lampke T, Marx G et al (1999) Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta 337:169–177CrossRef
51.
go back to reference Idicula M, Boudenne A, Umadevi L et al (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66:2719–2725CrossRef Idicula M, Boudenne A, Umadevi L et al (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66:2719–2725CrossRef
52.
go back to reference Mishra S, Mohanty AK, Drzal LT et al (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef Mishra S, Mohanty AK, Drzal LT et al (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef
53.
go back to reference Leszczyńska A, Njuguna J, Pielichowski K et al (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96CrossRef Leszczyńska A, Njuguna J, Pielichowski K et al (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96CrossRef
54.
go back to reference Leszczyńska A, Njuguna J, Pielichowski K et al (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22CrossRef Leszczyńska A, Njuguna J, Pielichowski K et al (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22CrossRef
55.
go back to reference Markarian J (2005) Automotive and packaging offer growth opportunities for nanocomposites. Plastics Addit Compound 7:18–21CrossRef Markarian J (2005) Automotive and packaging offer growth opportunities for nanocomposites. Plastics Addit Compound 7:18–21CrossRef
56.
go back to reference Auto Applications Drive Commercialization of Nanocomposites (2002) Plastics. Addit Compound 4:30–33 Auto Applications Drive Commercialization of Nanocomposites (2002) Plastics. Addit Compound 4:30–33
57.
go back to reference BCC Research (2006) Nanocomposites, nanoparticles, nanoclays, and nanotubes. 1 Jun 2006 BCC Research (2006) Nanocomposites, nanoparticles, nanoclays, and nanotubes. 1 Jun 2006
60.
go back to reference Kojima Y, Usuki A, Kawasumi M et al (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189CrossRef Kojima Y, Usuki A, Kawasumi M et al (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189CrossRef
61.
go back to reference Kojima Y, Usuki A, Kawasumi M et al (1993) Sorption of water in nylon 6-clay hybrid. J Appl Polym Sci 49:1259–1264CrossRef Kojima Y, Usuki A, Kawasumi M et al (1993) Sorption of water in nylon 6-clay hybrid. J Appl Polym Sci 49:1259–1264CrossRef
62.
go back to reference Longkullabutra H, Thamjaree W, Nhuapeng W (2010) Improvement in the tensile strength of epoxy resin and hemp/epoxy resin composites using carbon nanotubes. Adv Mater Res 93–94:497–500CrossRef Longkullabutra H, Thamjaree W, Nhuapeng W (2010) Improvement in the tensile strength of epoxy resin and hemp/epoxy resin composites using carbon nanotubes. Adv Mater Res 93–94:497–500CrossRef
63.
go back to reference Liu Z, Erhan SZ (2008) “Green” composites and nanocomposites from soybean oil. Mater Sci Eng A 483–484:708–711 Liu Z, Erhan SZ (2008) “Green” composites and nanocomposites from soybean oil. Mater Sci Eng A 483–484:708–711
64.
go back to reference Faruk O, Matuana LM (2008) Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Compos Sci Technol 68:2073–2077CrossRef Faruk O, Matuana LM (2008) Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Compos Sci Technol 68:2073–2077CrossRef
65.
go back to reference Vilela C, Freire CSR, Marques PAAP et al (2010) Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate. Carbohydr Polym 79:1150–1156CrossRef Vilela C, Freire CSR, Marques PAAP et al (2010) Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate. Carbohydr Polym 79:1150–1156CrossRef
66.
go back to reference Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41:806–819CrossRef Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41:806–819CrossRef
67.
go back to reference Abdelmouleh M, Boufi S, Belgacem MN et al (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639CrossRef Abdelmouleh M, Boufi S, Belgacem MN et al (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639CrossRef
68.
go back to reference Junior de Menezes A, Siqueira G, Curvelo AAS et al (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRef Junior de Menezes A, Siqueira G, Curvelo AAS et al (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRef
69.
go back to reference Nakagaito AN, Fujimura A, Sakai T et al (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297CrossRef Nakagaito AN, Fujimura A, Sakai T et al (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297CrossRef
70.
go back to reference Haq M, Burgueño R, Mohanty AK et al (2008) Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos Sci Technol 68:3344–3351CrossRef Haq M, Burgueño R, Mohanty AK et al (2008) Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos Sci Technol 68:3344–3351CrossRef
71.
go back to reference Njuguna J, Michalowski S, Pielichowski K, Kayvantash K, Walton AC (2011) Fabrication, characterisation and low-velocity impact on hybrid sandwich composites with polyurethane/layered silicate foam cores. Polym Compos 32:6–13 Njuguna J, Michalowski S, Pielichowski K, Kayvantash K, Walton AC (2011) Fabrication, characterisation and low-velocity impact on hybrid sandwich composites with polyurethane/layered silicate foam cores. Polym Compos 32:6–13
72.
go back to reference Sun L, Gibson RF, Gordaninejad F et al (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69:2392–2409CrossRef Sun L, Gibson RF, Gordaninejad F et al (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69:2392–2409CrossRef
73.
go back to reference Guigo N, Vincent L, Mija A et al (2009) Innovative green nanocomposites based on silicate clays/lignin/natural fibres. Compos Sci Technol 69:1979–1984CrossRef Guigo N, Vincent L, Mija A et al (2009) Innovative green nanocomposites based on silicate clays/lignin/natural fibres. Compos Sci Technol 69:1979–1984CrossRef
74.
go back to reference Richardson MOW, Zhang ZY (2000) Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos A 31:1303–1310CrossRef Richardson MOW, Zhang ZY (2000) Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos A 31:1303–1310CrossRef
75.
go back to reference Sèbe G, Cetin NS, Hill CAS et al (2000) RTM hemp fibre-reinforced polyester composites. Appl Compos Mater 7:341–349CrossRef Sèbe G, Cetin NS, Hill CAS et al (2000) RTM hemp fibre-reinforced polyester composites. Appl Compos Mater 7:341–349CrossRef
76.
go back to reference Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432CrossRef Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432CrossRef
77.
go back to reference Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Compos 20:621–627CrossRef Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Compos 20:621–627CrossRef
78.
go back to reference Dweib MA, Hu B, O’Donnell A et al (2004) All natural composite sandwich beams for structural applications. Compos Struct 63:147–157CrossRef Dweib MA, Hu B, O’Donnell A et al (2004) All natural composite sandwich beams for structural applications. Compos Struct 63:147–157CrossRef
79.
go back to reference John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRef John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRef
80.
go back to reference Automotive Industries (2000) “Goes Natural” for large body panel. DaimlerChrysler 9 Automotive Industries (2000) “Goes Natural” for large body panel. DaimlerChrysler 9
81.
go back to reference Pervaiz M, Sain MM (2003) Sheet-molded polyolefin natural fiber composites for automotive applications. Macromol Mater Eng 288:553–557CrossRef Pervaiz M, Sain MM (2003) Sheet-molded polyolefin natural fiber composites for automotive applications. Macromol Mater Eng 288:553–557CrossRef
82.
go back to reference Suddell BC, Evans WJ, Mohanty AK, Misra M, Drzal LT (eds) (2005) Natural fiber composites in automotive applications: Natural fibers. Biopolymers and Biocomposites. CRC Press, p 231 Suddell BC, Evans WJ, Mohanty AK, Misra M, Drzal LT (eds) (2005) Natural fiber composites in automotive applications: Natural fibers. Biopolymers and Biocomposites. CRC Press, p 231
83.
go back to reference Bledzki AK, Faruko O, Sperher VE (2006) Cars from bio-fibres. Macromol Mater Eng 291:449–457CrossRef Bledzki AK, Faruko O, Sperher VE (2006) Cars from bio-fibres. Macromol Mater Eng 291:449–457CrossRef
84.
go back to reference Diener J, Siehler U (1999) Ökologischer vergleich von NMT-und GMT-bauteilen. Angew Makromol Chem 272:1–1CrossRef Diener J, Siehler U (1999) Ökologischer vergleich von NMT-und GMT-bauteilen. Angew Makromol Chem 272:1–1CrossRef
85.
go back to reference Corbiere-Nicollier T, Gfeller Laban B, Lundquist L et al (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour Conservat Recycl 33:267–287CrossRef Corbiere-Nicollier T, Gfeller Laban B, Lundquist L et al (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour Conservat Recycl 33:267–287CrossRef
86.
go back to reference Njuguna J, Pena I, Zhu H et al (2009) Opportunities and environmental health challenges facing integration of polymer nanocomposites: technologies for automotive applications. Int J Polym Technol 1:113–122 Njuguna J, Pena I, Zhu H et al (2009) Opportunities and environmental health challenges facing integration of polymer nanocomposites: technologies for automotive applications. Int J Polym Technol 1:113–122
88.
go back to reference Leao A, Rowell R, Tavares N (1997) Applications of natural fibres in automotive industry in brazil-thermoforming process. In: 4th International Conference on Frontiers of Polymers and Advanced Materials Conference Proceedings, pp 755–760 Leao A, Rowell R, Tavares N (1997) Applications of natural fibres in automotive industry in brazil-thermoforming process. In: 4th International Conference on Frontiers of Polymers and Advanced Materials Conference Proceedings, pp 755–760
89.
go back to reference Dahlke B, Larbig H, Scherzer HD et al (1998) Natural fiber reinforced foams based on renewable resources for automotive interior applications. J Cell Plast 34:361–378 Dahlke B, Larbig H, Scherzer HD et al (1998) Natural fiber reinforced foams based on renewable resources for automotive interior applications. J Cell Plast 34:361–378
Metadata
Title
Natural Fibre-Reinforced Polymer Composites and Nanocomposites for Automotive Applications
Authors
James Njuguna
Paul Wambua
Krzysztof Pielichowski
Kambiz Kayvantash
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-17370-7_23

Premium Partners