Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

1. Natural Polymers: Their Blends, Composites and Nanocomposites: State of Art, New Challenges and Opportunities

Authors : P. M Visakh, Aji P. Mathew, Sabu Thomas

Published in: Advances in Natural Polymers

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present chapter deals with a brief account on various types of natural polymers such as cellulose, chitin, starch, soy protein, casein, hemicelluloses, alginates, polylactic acid and polyhydroxyalkanoates etc. Blends, composites and nanocomposites based on these polymers have been very briefly discussed. Finally the applications, new challenges and opportunities of these biomaterials are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Crawford, R.L.: Lignin Biodegradation and Transformation. Wiley, New York (1981). ISBN 0-471-05743-6 Crawford, R.L.: Lignin Biodegradation and Transformation. Wiley, New York (1981). ISBN 0-471-05743-6
3.
4.
go back to reference Charles, A. B, (ed.).: Vacuum Deposition onto Webs, Films, and Foils, 0(8155), p. 165. ISBN 0815515359 (2007) Charles, A. B, (ed.).: Vacuum Deposition onto Webs, Films, and Foils, 0(8155), p. 165. ISBN 0815515359 (2007)
5.
go back to reference Stenius, P.: 1. Forest Products Chemistry. Papermaking Science and Technology. Fapet OY, Finland. p. 35. ISBN 952-5216-03-9 Stenius, P.: 1. Forest Products Chemistry. Papermaking Science and Technology. Fapet OY, Finland. p. 35. ISBN 952-5216-03-9
6.
go back to reference Imai, M., Ikari, K., Suzuki, I.: High-performance hydrolysis of cellulose using mixed cellulose species and ultrasonication pretreatment. Biochem. Eng. J. 17, 19–23 (2003) Imai, M., Ikari, K., Suzuki, I.: High-performance hydrolysis of cellulose using mixed cellulose species and ultrasonication pretreatment. Biochem. Eng. J. 17, 19–23 (2003)
7.
go back to reference Jarvis, M.: Cellulose stacks up. Nature 426, 611–612 (2003) Jarvis, M.: Cellulose stacks up. Nature 426, 611–612 (2003)
8.
go back to reference Holtzapple, M.T.: Cellulose. In: Macrae, R., Robinson, R.K., Saddler, M.J. (eds.) Encyclopedia of Food Science Food Technology and Nutrition. London Academic Press, UK (1993) Holtzapple, M.T.: Cellulose. In: Macrae, R., Robinson, R.K., Saddler, M.J. (eds.) Encyclopedia of Food Science Food Technology and Nutrition. London Academic Press, UK (1993)
9.
go back to reference Klemm, D., Philipp, B., Heinze, T., Heinze, U., Wagenknecht, W.: Comprehensive Cellulose Chemistry Fundamentals and Analytical Methods, vol. 1. Wiley-VCH, Germany (1998) Klemm, D., Philipp, B., Heinze, T., Heinze, U., Wagenknecht, W.: Comprehensive Cellulose Chemistry Fundamentals and Analytical Methods, vol. 1. Wiley-VCH, Germany (1998)
10.
go back to reference Krässig, H.: Cellulose: Structure, Accessibility, and Reactivity Gordon and Breach Sci. Publishers, Switzerland (1993) Krässig, H.: Cellulose: Structure, Accessibility, and Reactivity Gordon and Breach Sci. Publishers, Switzerland (1993)
11.
go back to reference Matthysse, A.G., Deschet, K., Williams, M., Marry, M., White, A.R., Smith, W.C.: A functional cellulose synthase from ascidian epidermis. Proc. Natl. Acad. Sci. 101, 986–991 (2004) Matthysse, A.G., Deschet, K., Williams, M., Marry, M., White, A.R., Smith, W.C.: A functional cellulose synthase from ascidian epidermis. Proc. Natl. Acad. Sci. 101, 986–991 (2004)
12.
go back to reference Jonas, R., Farah, L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59, 101–106 (1998) Jonas, R., Farah, L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59, 101–106 (1998)
13.
go back to reference Iguchi, M., Yamanaka, S., Budhiono, A.: Review bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000) Iguchi, M., Yamanaka, S., Budhiono, A.: Review bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000)
14.
go back to reference Sreeramulu, G., Zhu, Y., Knol, W.: Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem 48, 2589–2594 (2000) Sreeramulu, G., Zhu, Y., Knol, W.: Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem 48, 2589–2594 (2000)
15.
go back to reference Torres, F.G., Troncoso, O.P., Lopez, D., Grande, C., Gomez, C.M.: Reversible stress softening and stress recovery of cellulose networks. Soft Matter 5, 4185–4190 (2009) Torres, F.G., Troncoso, O.P., Lopez, D., Grande, C., Gomez, C.M.: Reversible stress softening and stress recovery of cellulose networks. Soft Matter 5, 4185–4190 (2009)
16.
go back to reference Torres, F.G., Grande, C.J., Troncoso, O.P., Gomez, C.M., Lopez, D.: Bacterial cellulose nanocomposites for biomedical applications; In: Kumar, S.A., Thiagarajan, S., Wang, F. (eds.) Biocompatible Nanomaterials: Synthesis, Characterization and Application in Analytical Chemistry. Nova Science Publishers, USA (2010) Torres, F.G., Grande, C.J., Troncoso, O.P., Gomez, C.M., Lopez, D.: Bacterial cellulose nanocomposites for biomedical applications; In: Kumar, S.A., Thiagarajan, S., Wang, F. (eds.) Biocompatible Nanomaterials: Synthesis, Characterization and Application in Analytical Chemistry. Nova Science Publishers, USA (2010)
17.
go back to reference Ring, D.F., Nashed, W., Dow, T.: Liquid loaded pad for medical applications; US patent 4 588 400 (1986) Ring, D.F., Nashed, W., Dow, T.: Liquid loaded pad for medical applications; US patent 4 588 400 (1986)
18.
go back to reference Dong, H., Strawhecker, K.E., Snyder, J.F., Orlicki, J.A., Reiner, R.S., Rudie, A.W.: Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr. Polym. 87, 2488–2495 (2012) Dong, H., Strawhecker, K.E., Snyder, J.F., Orlicki, J.A., Reiner, R.S., Rudie, A.W.: Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr. Polym. 87, 2488–2495 (2012)
19.
go back to reference Cristiane, S., Rodrigues F.H.A., Neto,A.G.V.C., Pereira A.G.B., Fajardo, A.R., Radovanovic, E., Rubira, A.F., Muniz, E.C.: Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur. Polym. J. Macromol. Nanotechnol. 48, 454–463 (2012) Cristiane, S., Rodrigues F.H.A., Neto,A.G.V.C., Pereira A.G.B., Fajardo, A.R., Radovanovic, E., Rubira, A.F., Muniz, E.C.: Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur. Polym. J. Macromol. Nanotechnol. 48, 454–463 (2012)
20.
go back to reference Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419–431 (2005) Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419–431 (2005)
21.
go back to reference Andersson, J., Stenhamre, H., Bäckdahl, H., Gatenholm, P.: Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J. Biomed. Mater. Res., Part A 94, 1124–1132 (2010) Andersson, J., Stenhamre, H., Bäckdahl, H., Gatenholm, P.: Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J. Biomed. Mater. Res., Part A 94, 1124–1132 (2010)
22.
go back to reference Czaja, W., Krystynowicza, A., Bielecki, S., Malcolm Brown Jr, R.: Microbial cellulose—the natural power to heal wounds. Biomaterials 27, 145–151 (2006) Czaja, W., Krystynowicza, A., Bielecki, S., Malcolm Brown Jr, R.: Microbial cellulose—the natural power to heal wounds. Biomaterials 27, 145–151 (2006)
23.
go back to reference Czaja, W.K., Young, D.J., Kawecki, M., Brown Jr, R.M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007) Czaja, W.K., Young, D.J., Kawecki, M., Brown Jr, R.M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007)
24.
go back to reference Cienchanska, D.: Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text. East. Eur. 12, 69–72 (2004) Cienchanska, D.: Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text. East. Eur. 12, 69–72 (2004)
25.
go back to reference Legeza, V.I., Galenko-Yaroshevskii, V.P., Zinovev, E.V., Paramonov, B.A., Kreichman, G.S., Turkovskii, I.I., Gumenyuk, E.S., Karnovich, A.G., Khripunov, A.K.: Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull. Exp. Biol. Med. 138, 311–315 (2004) Legeza, V.I., Galenko-Yaroshevskii, V.P., Zinovev, E.V., Paramonov, B.A., Kreichman, G.S., Turkovskii, I.I., Gumenyuk, E.S., Karnovich, A.G., Khripunov, A.K.: Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull. Exp. Biol. Med. 138, 311–315 (2004)
26.
go back to reference Wan, W.K., Millon, L.E.: Poly(vinyl alcohol)-bacterial cellulose nanocomposite; U.S. Patent Appl., Publ. US 2005037082 A1, 16 (2005) Wan, W.K., Millon, L.E.: Poly(vinyl alcohol)-bacterial cellulose nanocomposite; U.S. Patent Appl., Publ. US 2005037082 A1, 16 (2005)
27.
go back to reference Sokolnicki, A.M., Fisher, R.J., Harrah, T.P., Kaplan, D.L.: Permeability of bacterial cellulose membranes. J. Membr. Sci. 272, 15–27 (2006) Sokolnicki, A.M., Fisher, R.J., Harrah, T.P., Kaplan, D.L.: Permeability of bacterial cellulose membranes. J. Membr. Sci. 272, 15–27 (2006)
28.
go back to reference Charpentier, P.A., Maguire, A., Wan, W.: Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl. Surf. Sci. 252, 6360–6367 (2006) Charpentier, P.A., Maguire, A., Wan, W.: Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl. Surf. Sci. 252, 6360–6367 (2006)
29.
go back to reference Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001) Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001)
30.
go back to reference Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P.: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149 (2006) Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P.: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149 (2006)
31.
go back to reference Wan, W.K., Hutter, J.L., Millon, L., Guhados, G.: Bacterial cellulose and its nanocomposites for biomedical applications. ACS Symp. Ser. 938, 221–241 (2006) Wan, W.K., Hutter, J.L., Millon, L., Guhados, G.: Bacterial cellulose and its nanocomposites for biomedical applications. ACS Symp. Ser. 938, 221–241 (2006)
32.
go back to reference Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M.: Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A Mater. Sci. Process. 81, 1109–1112 (2005) Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M.: Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A Mater. Sci. Process. 81, 1109–1112 (2005)
33.
go back to reference Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H.: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007) Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H.: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007)
34.
go back to reference Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M., Handa, K.: Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153–155 (2005) Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M., Handa, K.: Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153–155 (2005)
35.
go back to reference Podsiadlo, P., Sui, L., Elkasabi, Y., Burgardt, P., Lee, J., Miryala, A., Kusumaatmaja, W., Carman, M., Shtein, M., Kieffer, J., Lahann, J., Kotov, N.: Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23, 7901–7906 (2007) Podsiadlo, P., Sui, L., Elkasabi, Y., Burgardt, P., Lee, J., Miryala, A., Kusumaatmaja, W., Carman, M., Shtein, M., Kieffer, J., Lahann, J., Kotov, N.: Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23, 7901–7906 (2007)
36.
go back to reference Legnani, C., Vilani, C., Calil, V.L., Barud, H.S., Quirino, W.G., Achete, C.A., Ribeiro, S.J.L., Cremona, M.: Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517, 1016–1020 (2008) Legnani, C., Vilani, C., Calil, V.L., Barud, H.S., Quirino, W.G., Achete, C.A., Ribeiro, S.J.L., Cremona, M.: Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517, 1016–1020 (2008)
37.
go back to reference Svagan, A.J., Samir, M.A.S.A., Berglund, L.A.: Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269 (2008) Svagan, A.J., Samir, M.A.S.A., Berglund, L.A.: Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269 (2008)
38.
go back to reference van den Berg, O., Schroeter, M., Capadona, J.R., Weder, C.: Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. Material Chememistry 17, 2746–2753 (2007) van den Berg, O., Schroeter, M., Capadona, J.R., Weder, C.: Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. Material Chememistry 17, 2746–2753 (2007)
39.
go back to reference Agarwal, M., Lvov, Y., Varahramyan, K.: Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17, 5319–5325 (2006) Agarwal, M., Lvov, Y., Varahramyan, K.: Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17, 5319–5325 (2006)
40.
go back to reference Kumar, M.N.V.R.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000) Kumar, M.N.V.R.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000)
41.
go back to reference Kobayashi, S., Kiyosada, T., Shoda, S.-I.: Synthesis of artificial chitin: irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate. J. Am. Chem. Soc. 118, 13113–13114 (1996) Kobayashi, S., Kiyosada, T., Shoda, S.-I.: Synthesis of artificial chitin: irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate. J. Am. Chem. Soc. 118, 13113–13114 (1996)
42.
go back to reference Sakamoto, J., Sugiyama, J., Kimura, S., Imai, T., Itoh, T., Watanabe, T., Kobayashi, S. Macromolecules, 33, 4155-4160 (2000) Sakamoto, J., Sugiyama, J., Kimura, S., Imai, T., Itoh, T., Watanabe, T., Kobayashi, S. Macromolecules, 33, 4155-4160 (2000)
43.
go back to reference Kadokawa, J.-I.: Precision polysaccharide synthesis catalyzed by enzymes. Chem. Rev. 111, 4308–4345 (2011) Kadokawa, J.-I.: Precision polysaccharide synthesis catalyzed by enzymes. Chem. Rev. 111, 4308–4345 (2011)
44.
go back to reference Paillet, M., Dufresne, A.: Macromolecules, 34, 6527–6530 (2001) Paillet, M., Dufresne, A.: Macromolecules, 34, 6527–6530 (2001)
45.
go back to reference Ahmed Jalal, U., Masahiro, F., Shinichiro, S., Yasuo, G.: Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr. Polym. 87, 799–805 (2012) Ahmed Jalal, U., Masahiro, F., Shinichiro, S., Yasuo, G.: Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr. Polym. 87, 799–805 (2012)
46.
go back to reference Phongying, S., Aiba, S., Chirachanchai, S.: Polymer, 48, 393–400 (2007) Phongying, S., Aiba, S., Chirachanchai, S.: Polymer, 48, 393–400 (2007)
47.
go back to reference Noh, H.K., Lee, S.W., Kim, J.M., Oh, J.E., Kim, K.H., Chung, C.P., Choi, S.C., Park, W.H., Min, B.M.: Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials. Biomaterials 27, 3934–3944 (2006) Noh, H.K., Lee, S.W., Kim, J.M., Oh, J.E., Kim, K.H., Chung, C.P., Choi, S.C., Park, W.H., Min, B.M.: Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials. Biomaterials 27, 3934–3944 (2006)
48.
go back to reference Park, K.E., Jung, S.Y., Lee, S.J., Min, B.M., Park, W.H.: Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int. J. Biol. Macromol 38, 165–173 (2006) Park, K.E., Jung, S.Y., Lee, S.J., Min, B.M., Park, W.H.: Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int. J. Biol. Macromol 38, 165–173 (2006)
49.
go back to reference Park, K.E., Kang, H.K., Lee, S.J., Min, B.M., Park, W.H.: Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules 7, 635–643 (2006) Park, K.E., Kang, H.K., Lee, S.J., Min, B.M., Park, W.H.: Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules 7, 635–643 (2006)
50.
go back to reference Shalumon, K.T., Binulal, N.S., Selvamurugan, N., Nair, S.V., Menon, D., Furuike, T., Tamura, H., Jayakumar, R.: Carbohydr. Polym. 77, 863–869 (2009) Shalumon, K.T., Binulal, N.S., Selvamurugan, N., Nair, S.V., Menon, D., Furuike, T., Tamura, H., Jayakumar, R.: Carbohydr. Polym. 77, 863–869 (2009)
51.
go back to reference Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F.A., Zhang, M.: Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26, 6176–6184 (2005) Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F.A., Zhang, M.: Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26, 6176–6184 (2005)
52.
go back to reference Subramaniyan, A., Vu, D., Larsen, G.F., Lin, H.Y. J. Biomater. Sci. Poly. Ed. 7, 861–873 (2005) Subramaniyan, A., Vu, D., Larsen, G.F., Lin, H.Y. J. Biomater. Sci. Poly. Ed. 7, 861–873 (2005)
53.
go back to reference Mo, X., Chen, Z., Weber, H.J.: Front. Mater. Sci. 1, 20–23 (2007) Mo, X., Chen, Z., Weber, H.J.: Front. Mater. Sci. 1, 20–23 (2007)
54.
go back to reference Zhang, Y.Z., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B., Lim, C.T.: Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29, 4314–4322 (2008) Zhang, Y.Z., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B., Lim, C.T.: Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29, 4314–4322 (2008)
55.
go back to reference Yang, D., Jin, Y., Zhou, Y., Ma, G., Chen, X., Lu, F.Nie.: In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds. Macromolcule. Biosci. 8, 239–246 (2008) Yang, D., Jin, Y., Zhou, Y., Ma, G., Chen, X., Lu, F.Nie.: In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds. Macromolcule. Biosci. 8, 239–246 (2008)
56.
go back to reference Whistler, R.L., BeMiller, J.N., Paschall, B.F.: Starch: chemistry and technology. Academic Press, New York (1984) Whistler, R.L., BeMiller, J.N., Paschall, B.F.: Starch: chemistry and technology. Academic Press, New York (1984)
57.
go back to reference Liao, H., Wu, C.: New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl. Poly. Sci. 108, 2280–2289 (2008) Liao, H., Wu, C.: New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl. Poly. Sci. 108, 2280–2289 (2008)
58.
go back to reference Carr. L., Parra, D., Ponce, P., Lugão, A., Buchler, P.: Influence of fibers on the mechanical properties of cassava starch foams. J. Polym. Environ. 14, 179–183 (2006) Carr. L., Parra, D., Ponce, P., Lugão, A., Buchler, P.: Influence of fibers on the mechanical properties of cassava starch foams. J. Polym. Environ. 14, 179–183 (2006)
59.
go back to reference Gattin, R., Copinet, A., Bertrand, C., Couturier, Y.: Biodegradation study of a starch and poly(lactic acid) co-extruded material in liquid, composting and inert mineral media. Int. Biodeterior. Biodegradation 50, 25–31 (2002) Gattin, R., Copinet, A., Bertrand, C., Couturier, Y.: Biodegradation study of a starch and poly(lactic acid) co-extruded material in liquid, composting and inert mineral media. Int. Biodeterior. Biodegradation 50, 25–31 (2002)
60.
go back to reference Wang. L.; Shogren, R. L.; Carriere, C.: Poly. Eng. Sci. 40, 499–506 (2000) Wang. L.; Shogren, R. L.; Carriere, C.: Poly. Eng. Sci. 40, 499–506 (2000)
61.
go back to reference Averous, L.: Biodegradable multiphase systems based on plasticized starch. J. Macromol. Sci.-Poly. Rev. C44, 231-274 (2004) Averous, L.: Biodegradable multiphase systems based on plasticized starch. J. Macromol. Sci.-Poly. Rev. C44, 231-274 (2004)
62.
go back to reference Vidal, R., Martinez, P., Mulet, E.: Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers. J. Polym. Environ. 15, 159–168 (2007) Vidal, R., Martinez, P., Mulet, E.: Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers. J. Polym. Environ. 15, 159–168 (2007)
63.
go back to reference Martin. O.; Schwach. E.; Avérous. L.; Couturier. Y.: properties of biodegradable multilayer films based on plasticized wheat starch. Starch–Stärke 53, 372–380 (2001) Martin. O.; Schwach. E.; Avérous. L.; Couturier. Y.: properties of biodegradable multilayer films based on plasticized wheat starch. Starch–Stärke 53, 372–380 (2001)
64.
go back to reference Gattin, R., Copinet, A., Bertrand, C., Couturier, Y.: Int. Biodeterior. Biodegradation 50, 25–31 (2002) Gattin, R., Copinet, A., Bertrand, C., Couturier, Y.: Int. Biodeterior. Biodegradation 50, 25–31 (2002)
65.
go back to reference Famá, Lucía., Gañan Rojo, Piedad., Bernal, Celina., Goyanes, Silvia.: Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydr. Polym. 87(3), 1989–1993 (2012) Famá, Lucía., Gañan Rojo, Piedad., Bernal, Celina., Goyanes, Silvia.: Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydr. Polym. 87(3), 1989–1993 (2012)
66.
go back to reference Glycine max. Multilingual Multiscript Plant Name Database Glycine max. Multilingual Multiscript Plant Name Database
67.
go back to reference Riaz, Mian.N.: Soy Applications in Food. CRC Press, Boca Raton (2006). ISBN 0-8493-2981-7 Riaz, Mian.N.: Soy Applications in Food. CRC Press, Boca Raton (2006). ISBN 0-8493-2981-7
68.
go back to reference Liu, D., Chen, H., Chang, P.R., Qinglin, W., Li, K., Guan, L.: Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresour. Technol. 101(15), 6235–6241 (2010) Liu, D., Chen, H., Chang, P.R., Qinglin, W., Li, K., Guan, L.: Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresour. Technol. 101(15), 6235–6241 (2010)
69.
go back to reference Kumar, P., Sandeep, K.P., Alavi, S., Truong, V.D., Gorga, R.E.: Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Food Eng. 100(3), 480–489 (2010) Kumar, P., Sandeep, K.P., Alavi, S., Truong, V.D., Gorga, R.E.: Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Food Eng. 100(3), 480–489 (2010)
70.
go back to reference Jong, L., Peterson, S.C.: Effects of soy protein nanoparticle aggregate size on the viscoelastic properties of styrene–butadiene composites. Compos. A Appl. Sci. Manuf. 39(11), 1768–1777 (2008) Jong, L., Peterson, S.C.: Effects of soy protein nanoparticle aggregate size on the viscoelastic properties of styrene–butadiene composites. Compos. A Appl. Sci. Manuf. 39(11), 1768–1777 (2008)
71.
go back to reference Su, J.-F., Yuan, X.Y., Huang, Z., Xia, W.L.: Properties stability and biodegradation behaviors of soy protein isolate/poly (vinyl alcohol) blend films. Polym. Degrad. Stab. 95(7), 1226–1237 (2010) Su, J.-F., Yuan, X.Y., Huang, Z., Xia, W.L.: Properties stability and biodegradation behaviors of soy protein isolate/poly (vinyl alcohol) blend films. Polym. Degrad. Stab. 95(7), 1226–1237 (2010)
72.
go back to reference Kumar, R., Zhang, L.: Aligned ramie fiber reinforced arylated soy protein composites with improved properties. Compos. Sci. Technol. 69(5), 555–560 (2009) Kumar, R., Zhang, L.: Aligned ramie fiber reinforced arylated soy protein composites with improved properties. Compos. Sci. Technol. 69(5), 555–560 (2009)
73.
go back to reference Mariani, P.D.S.C., Allganer, K., Oliveira, F.B., Cardoso, E.J.B.N., Innocentini-Mei, L.H.: Effect of soy protein isolate on the thermal, mechanical and morphological properties of poly (ɛ-caprolactone) and corn starch blends. Polym. Testing 28(8), 824–829 (2009) Mariani, P.D.S.C., Allganer, K., Oliveira, F.B., Cardoso, E.J.B.N., Innocentini-Mei, L.H.: Effect of soy protein isolate on the thermal, mechanical and morphological properties of poly (ɛ-caprolactone) and corn starch blends. Polym. Testing 28(8), 824–829 (2009)
74.
go back to reference Vega-Lugo, A.-C., Lim, L.T.: Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res. Int. 42(8), 933–940 (2009) Vega-Lugo, A.-C., Lim, L.T.: Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res. Int. 42(8), 933–940 (2009)
75.
go back to reference Wang,W., Wang, A.: Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohydr. Polym. 77, 4, 19, 891–897 (2009) Wang,W., Wang, A.: Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohydr. Polym. 77, 4, 19, 891–897 (2009)
76.
go back to reference Peles, Z., Zilberman, M.: Novel soyprotein wound dressings with controlled antibiotic release: Mechanical and physical properties. Acta Biomater. 8(1), 209–217 (2012) Peles, Z., Zilberman, M.: Novel soyprotein wound dressings with controlled antibiotic release: Mechanical and physical properties. Acta Biomater. 8(1), 209–217 (2012)
77.
go back to reference Frinault, A., Gallant, D.J., Bouchet, B., Dumont, J.P.: Preparation of casein films by a modified wet spinning process. J. Food Sci. 62(4), 744–747 (1997) Frinault, A., Gallant, D.J., Bouchet, B., Dumont, J.P.: Preparation of casein films by a modified wet spinning process. J. Food Sci. 62(4), 744–747 (1997)
78.
go back to reference Fox, P.F., Kelly, A.L.: The caseins. In: Yada R.Y (ed.) Proteins In Food Processing. Woodhead Publishing Ltd and CRC Press LLC, Cambridge, UK (2004) Fox, P.F., Kelly, A.L.: The caseins. In: Yada R.Y (ed.) Proteins In Food Processing. Woodhead Publishing Ltd and CRC Press LLC, Cambridge, UK (2004)
79.
go back to reference Walstra, P., Wouters, J., Geurts, T.: Dairy Science and Technology, 2nd edn. CRC Press LLC, New York, USA (2006) Walstra, P., Wouters, J., Geurts, T.: Dairy Science and Technology, 2nd edn. CRC Press LLC, New York, USA (2006)
80.
go back to reference Dickinson, E.: Casein in emulsions: interfacial properties and interactions. Int. Dairy J. 9, 305–312(1999) Dickinson, E.: Casein in emulsions: interfacial properties and interactions. Int. Dairy J. 9, 305–312(1999)
81.
go back to reference Horn, D.S.: Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8, 171–177 (1998) Horn, D.S.: Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8, 171–177 (1998)
82.
go back to reference Farrell, H.M., Malin, E.L., Brown, E.M., Mora-Gutierrezt. A.: Review of the chemistry of αs2-casein and the generation of the homologous molecular model to explain its properties. J. Dairy Sci. 92, 1338–1353 (2009) Farrell, H.M., Malin, E.L., Brown, E.M., Mora-Gutierrezt. A.: Review of the chemistry of αs2-casein and the generation of the homologous molecular model to explain its properties. J. Dairy Sci. 92, 1338–1353 (2009)
83.
go back to reference Ginger, M.R., Grignor, M.R.: Comparative aspects of milk caseins. Comp. Biochem. Physiol B Biochem. Mol. Biol. 124(2), 133–145 (1999) Ginger, M.R., Grignor, M.R.: Comparative aspects of milk caseins. Comp. Biochem. Physiol B Biochem. Mol. Biol. 124(2), 133–145 (1999)
84.
go back to reference Chen, H.: Functional properties and applications of edible films made of milk proteins. Dairy Sci. 78, 2563–2583 (1995) Chen, H.: Functional properties and applications of edible films made of milk proteins. Dairy Sci. 78, 2563–2583 (1995)
85.
go back to reference Pojanavaraphan, T., Magaraphan, R., Chiou, B.S., Schiraldi, D.A.: Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay. Biomacromolecules 11, 2640–2646 (2010) Pojanavaraphan, T., Magaraphan, R., Chiou, B.S., Schiraldi, D.A.: Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay. Biomacromolecules 11, 2640–2646 (2010)
86.
go back to reference Usov, A.I.: Alginic acids and alginates: analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 68, 957–966 (1999) Usov, A.I.: Alginic acids and alginates: analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 68, 957–966 (1999)
87.
go back to reference Chèze-Lange, H., Beunard, D., Dhulster, P., Guillochon, D., Cazé, A.M., Morcellet, M., Saude, N., Junter, G.A.: Production of microbial alginate in a membrane bioreactor. Enzyme Microb. Technol. 30, 656–661 (2002) Chèze-Lange, H., Beunard, D., Dhulster, P., Guillochon, D., Cazé, A.M., Morcellet, M., Saude, N., Junter, G.A.: Production of microbial alginate in a membrane bioreactor. Enzyme Microb. Technol. 30, 656–661 (2002)
88.
go back to reference Hernández-Carmona, G., McHuge, D.J., Arvizu-Higuera, D.L., Rodríguez-Montesinos, Y.E.: Pilot plant scale extraction of alginate from Macrocystis pyrifera. 1. Effect of pre-extraction treatments on yield and quality of alginate. J. Appl. Phycol. 10, 507–513 (1999) Hernández-Carmona, G., McHuge, D.J., Arvizu-Higuera, D.L., Rodríguez-Montesinos, Y.E.: Pilot plant scale extraction of alginate from Macrocystis pyrifera. 1. Effect of pre-extraction treatments on yield and quality of alginate. J. Appl. Phycol. 10, 507–513 (1999)
89.
go back to reference Gómez, C.G., Pérez Lambrecht, M.V., Lozano, J.E., Rinaudo, M., Villar, M.A.: Influence of extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 44, 365–371 (2009) Gómez, C.G., Pérez Lambrecht, M.V., Lozano, J.E., Rinaudo, M., Villar, M.A.: Influence of extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 44, 365–371 (2009)
90.
go back to reference Usov, A.I.: Alginic acids and alginates: analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 68, 957–966 (1999) Usov, A.I.: Alginic acids and alginates: analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 68, 957–966 (1999)
91.
go back to reference Chèze-Lange, H., Beunard, D., Dhulster, P., Guillochon, D., Cazé, A.M., Morcellet, M., Saude, N., Junter, G.A.: Production of microbial alginate in a membrane bioreactor. Enzyme Microb. Technol. 30, 656–661 (2002) Chèze-Lange, H., Beunard, D., Dhulster, P., Guillochon, D., Cazé, A.M., Morcellet, M., Saude, N., Junter, G.A.: Production of microbial alginate in a membrane bioreactor. Enzyme Microb. Technol. 30, 656–661 (2002)
92.
go back to reference Draget, K.I., Taylor, C.: Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids 25, 251–256 (2011) Draget, K.I., Taylor, C.: Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids 25, 251–256 (2011)
93.
go back to reference Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003) Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)
94.
go back to reference Hampson, F.C., Farndale, A., Strugala, V., Sykes, J., Jolliffe, I.G., Dettmar, P.W.: Alginate rafts and their characterisation. Int. J. Pharm. 294, 137–147 (2005) Hampson, F.C., Farndale, A., Strugala, V., Sykes, J., Jolliffe, I.G., Dettmar, P.W.: Alginate rafts and their characterisation. Int. J. Pharm. 294, 137–147 (2005)
95.
go back to reference Becker, T.A., Preul, M.C., Bichard, W.D., Kipke, D.R., McDougall, C.G.: Calcium alginate gel as a biocompatible material for endovascular arteriovenous malformation embolization: six-month results in an animal model. Neurosurgery 56, 793–803 (2005) Becker, T.A., Preul, M.C., Bichard, W.D., Kipke, D.R., McDougall, C.G.: Calcium alginate gel as a biocompatible material for endovascular arteriovenous malformation embolization: six-month results in an animal model. Neurosurgery 56, 793–803 (2005)
96.
go back to reference Thomas, A., Harding, K.G., Moore, K.: Alginates from wound dressings activate human macrophages to secret tumour necrosis factor-∝. Biomaterials 21, 1797–1802 (2000) Thomas, A., Harding, K.G., Moore, K.: Alginates from wound dressings activate human macrophages to secret tumour necrosis factor-∝. Biomaterials 21, 1797–1802 (2000)
97.
go back to reference Paul, W., Sharma, C.P.: Chitosan and alginate wound dressings: a short review. Trends Biomater. Artif. Organs 18, 18–23 (2004) Paul, W., Sharma, C.P.: Chitosan and alginate wound dressings: a short review. Trends Biomater. Artif. Organs 18, 18–23 (2004)
99.
go back to reference Martone, P.T., Estevez, J.M., Lu, F., Ruel, K., Denny, M.W, Somerville, C., Ralph, J.: Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. CB19 (2), 169–75. doi:10.1016/j.cub.2008.12.031. ISSN0960-9822. PMID19167225 (2009) Martone, P.T., Estevez, J.M., Lu, F., Ruel, K., Denny, M.W, Somerville, C., Ralph, J.: Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. CB19 (2), 169–75. doi:10.​1016/​j.​cub.​2008.​12.​031. ISSN0960-9822. PMID19167225 (2009)
100.
go back to reference Sjöström, E.: Wood Chemistry: Fundamentals and Applications. Academic Press, ISBN (1993). 012647480X Sjöström, E.: Wood Chemistry: Fundamentals and Applications. Academic Press, ISBN (1993). 012647480X
102.
go back to reference Darie, R.N., Cazacu, G., Vasile, C.: Melt processing and physico-chemical characterisation of some synthetic polymer (PVA)/natural polymer (lignin) systems, Iasi Academic Days, Progress in Organic and Polymer Chemistry,22nd (edn.), Iasi, Oct 8–10 (2009) Darie, R.N., Cazacu, G., Vasile, C.: Melt processing and physico-chemical characterisation of some synthetic polymer (PVA)/natural polymer (lignin) systems, Iasi Academic Days, Progress in Organic and Polymer Chemistry,22nd (edn.), Iasi, Oct 8–10 (2009)
103.
go back to reference Ciolacu, D., Darie, R.N., Cazacu, G.: Polymeric systems based on lignin—poly(vinyl alcohol), in Binders, composites and other applications based on Lignins. In: Totolin, M., Cazacu, G (eds.), pp. 170–194. PIM Publising, Iasi, ISBN 606-520-740-3 (2010) Ciolacu, D., Darie, R.N., Cazacu, G.: Polymeric systems based on lignin—poly(vinyl alcohol), in Binders, composites and other applications based on Lignins. In: Totolin, M., Cazacu, G (eds.), pp. 170–194. PIM Publising, Iasi, ISBN 606-520-740-3 (2010)
104.
go back to reference Baumberger, S., Lapierre, C., Monties, B., Della Valle, G.: Use of kraft lignin as filler for starch films. Polym. Degrad. Stab. 59, 273–277 (1998) Baumberger, S., Lapierre, C., Monties, B., Della Valle, G.: Use of kraft lignin as filler for starch films. Polym. Degrad. Stab. 59, 273–277 (1998)
105.
go back to reference Stevens, E.S., Willett, J.L., Shogren, R.L.: Thermoplastic starch—kraft lignin—glycerol blends. J. Biobased Mat. Bioen. 1(3), 351–359 (2007) Stevens, E.S., Willett, J.L., Shogren, R.L.: Thermoplastic starch—kraft lignin—glycerol blends. J. Biobased Mat. Bioen. 1(3), 351–359 (2007)
106.
go back to reference Tian, D., Hu, W., Zheng, Z., Liu, H., Xie, H.-Q.: Study on in situ synthesis of konjac glucomannan/silver nanocomposites via photochemical reduction. Appl. Polym. Sci. 100, 1323–1327 (2006) Tian, D., Hu, W., Zheng, Z., Liu, H., Xie, H.-Q.: Study on in situ synthesis of konjac glucomannan/silver nanocomposites via photochemical reduction. Appl. Polym. Sci. 100, 1323–1327 (2006)
107.
go back to reference Ye, X., Kennedy, J.F., Li, B., Xie, B.J.: Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohydr. Polym. 64, 532–538 (2006) Ye, X., Kennedy, J.F., Li, B., Xie, B.J.: Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohydr. Polym. 64, 532–538 (2006)
108.
go back to reference Wang, B., Jia, D.-Y., Ruan, S.-Q., Qin, S.: Structure and properties of collagen-konjac glucomannan-sodium alginate blend films. Appl. Polym. Sci. 106, 327–332 (2007) Wang, B., Jia, D.-Y., Ruan, S.-Q., Qin, S.: Structure and properties of collagen-konjac glucomannan-sodium alginate blend films. Appl. Polym. Sci. 106, 327–332 (2007)
109.
go back to reference Yu, Z., Jiang, Y., Zou, W., Duan, J., Xiong, X.: Preparation and characterization of cellulose and konjac glucomannan blend film from ionic liquid. Polym. Sci, Part B: Polym. Phys 47, 1686–1694 (2009) Yu, Z., Jiang, Y., Zou, W., Duan, J., Xiong, X.: Preparation and characterization of cellulose and konjac glucomannan blend film from ionic liquid. Polym. Sci, Part B: Polym. Phys 47, 1686–1694 (2009)
110.
go back to reference Cheng, L.H., Karim, A.A., Seow, C.C.: Characterisation of composite films made of konjac glucomannan (KGM), carboxymethyl cellulose (CMC) and lipid. Food Chem. 107, 411–418 (2008) Cheng, L.H., Karim, A.A., Seow, C.C.: Characterisation of composite films made of konjac glucomannan (KGM), carboxymethyl cellulose (CMC) and lipid. Food Chem. 107, 411–418 (2008)
111.
go back to reference Xiao, C., Liu, H., Gao, S., Zhang, L.: Characterization of poly(vinyl alcohol) –konjac glucomannan blend films. Macromol. Sci. Pure Appl. Chem. 37(9), 1009–1021 (2000) Xiao, C., Liu, H., Gao, S., Zhang, L.: Characterization of poly(vinyl alcohol) –konjac glucomannan blend films. Macromol. Sci. Pure Appl. Chem. 37(9), 1009–1021 (2000)
112.
go back to reference Mikkonen, K.S., Heikkilä, M.I., Helén, H., Hyvönen, L., Tenkanen, M.: Spruce galactoglucomannan films show promising barrier properties. Carbohydr. Polym. 79(4), 1107–1112 (2010) Mikkonen, K.S., Heikkilä, M.I., Helén, H., Hyvönen, L., Tenkanen, M.: Spruce galactoglucomannan films show promising barrier properties. Carbohydr. Polym. 79(4), 1107–1112 (2010)
113.
go back to reference Hosseinaei, Omid., Wang, Siqun., Taylor, Adam.M.: Jae-Woo Kim Effect of hemicellulose extraction on water absorption and mold susceptibility of wood–plastic composites. Int. Biodeterior. Biodegradation 71, 29–35 (2012) Hosseinaei, Omid., Wang, Siqun., Taylor, Adam.M.: Jae-Woo Kim Effect of hemicellulose extraction on water absorption and mold susceptibility of wood–plastic composites. Int. Biodeterior. Biodegradation 71, 29–35 (2012)
114.
go back to reference Gatenholm, P., Klemm, D.: Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35(3), 208–213 (2010) Gatenholm, P., Klemm, D.: Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35(3), 208–213 (2010)
115.
go back to reference Zugenmaier, P.: Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26, 1341–1417 (2001) Zugenmaier, P.: Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26, 1341–1417 (2001)
116.
go back to reference Keshk, S.M.A.S., Sameshima, K.: Evaluation of different carbon sources for bacterial cellulose production. Afr. J. Biotechnol. 4, 478–482 (2005) Keshk, S.M.A.S., Sameshima, K.: Evaluation of different carbon sources for bacterial cellulose production. Afr. J. Biotechnol. 4, 478–482 (2005)
117.
go back to reference Jung, J.Y., Park, J.K., Chang, H.N.: Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb. Technol. 37, 347–354 (2005) Jung, J.Y., Park, J.K., Chang, H.N.: Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb. Technol. 37, 347–354 (2005)
118.
go back to reference Bodin, A., Concaro, S., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential meniscus implant. Tissue Eng. Regen. Med. 1, 406–408 (2007) Bodin, A., Concaro, S., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential meniscus implant. Tissue Eng. Regen. Med. 1, 406–408 (2007)
120.
go back to reference Aslan, M., Simsek, G., Dayl, E.: Guided bone regeneration (GBR) on healing bone defects: a histological study in rabbits. J. Contemp. Dent. Pract. 2(5), 114–123 (2004) Aslan, M., Simsek, G., Dayl, E.: Guided bone regeneration (GBR) on healing bone defects: a histological study in rabbits. J. Contemp. Dent. Pract. 2(5), 114–123 (2004)
121.
go back to reference Carvalho, R.S., Nelson, D., Keldernian, H., et al.: Guided bone regeneration to repair an osseous defect. Am. J. Orthod. Dentofacial Orthop. 123, 455–467 (2003) Carvalho, R.S., Nelson, D., Keldernian, H., et al.: Guided bone regeneration to repair an osseous defect. Am. J. Orthod. Dentofacial Orthop. 123, 455–467 (2003)
122.
go back to reference Czaja, W.K., Young, D.J., Kawecki, M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1 (2007) Czaja, W.K., Young, D.J., Kawecki, M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1 (2007)
123.
go back to reference Shoda, M., Sugano, Y.: Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10, 1–8 (2005) Shoda, M., Sugano, Y.: Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10, 1–8 (2005)
124.
go back to reference Ummartyotin, S., Juntaro, J., Sain, M., Manuspiya, H.: Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind. Crops Prod. 35(1), 92–97 (2012) Ummartyotin, S., Juntaro, J., Sain, M., Manuspiya, H.: Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind. Crops Prod. 35(1), 92–97 (2012)
125.
go back to reference Iamaguti, L.S., Brandão, C.V.S., Pellizzon, C.H., Ranzani, J.J.T., Minto, B.W.: Análise histológica e morfométrica do uso de membrana biossintética de celulose em trocleoplastia experimental de cães. Pesq. Vet. Bras. 28(4), 195–200 (2008) Iamaguti, L.S., Brandão, C.V.S., Pellizzon, C.H., Ranzani, J.J.T., Minto, B.W.: Análise histológica e morfométrica do uso de membrana biossintética de celulose em trocleoplastia experimental de cães. Pesq. Vet. Bras. 28(4), 195–200 (2008)
126.
go back to reference Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B.: In vivo biocompatibility of bacterial cellulose. Biomed. Mater. Res. Part A 76, 431–438 (2006) Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B.: In vivo biocompatibility of bacterial cellulose. Biomed. Mater. Res. Part A 76, 431–438 (2006)
127.
go back to reference Salata, L.A., Hatton, P.V., Devlin, A.J.: In vitro and in vivo evaluation of e-PTFE and alkali-cellulose membranes for guided bone regeneration. Clin. Oral Implants Res. 12(1), 62–68 (2001) Salata, L.A., Hatton, P.V., Devlin, A.J.: In vitro and in vivo evaluation of e-PTFE and alkali-cellulose membranes for guided bone regeneration. Clin. Oral Implants Res. 12(1), 62–68 (2001)
128.
go back to reference Cockbill, S.M.E.: Evaluation in vivo and in vitro of the performance of interactive dressings in the management of animal soft tissue injuries. In: Veterinary Dermatology, 9(2), 87–98. ISSN 0959-4493 (1998) Cockbill, S.M.E.: Evaluation in vivo and in vitro of the performance of interactive dressings in the management of animal soft tissue injuries. In: Veterinary Dermatology, 9(2), 87–98. ISSN 0959-4493 (1998)
129.
go back to reference Macedo, N.L., Matuda, F.S., Macedo, L.G.S., Monteiro, A.S.F., Valera, M.C., Carvalho, Y.R.: Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz. J. Oral Sci. 3, 395 (2004) Macedo, N.L., Matuda, F.S., Macedo, L.G.S., Monteiro, A.S.F., Valera, M.C., Carvalho, Y.R.: Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz. J. Oral Sci. 3, 395 (2004)
130.
go back to reference Södergård, A., Mikael, S.: Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27(6), 1123–1163 (2002) Södergård, A., Mikael, S.: Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27(6), 1123–1163 (2002)
131.
go back to reference Middelton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as orthopedic devices. Biomaterial 21(23), 2335–2346 (2000) Middelton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as orthopedic devices. Biomaterial 21(23), 2335–2346 (2000)
132.
go back to reference Niţă, T.: Concepts in biological analysis of resorbable materials in oro-maxillofacial surgery. Revista de Chirurgie Oro-Maxilo-Facială şi Implantologie, 2(1), 33–38 (2011) Niţă, T.: Concepts in biological analysis of resorbable materials in oro-maxillofacial surgery. Revista de Chirurgie Oro-Maxilo-Facială şi Implantologie, 2(1), 33–38 (2011)
133.
go back to reference Royte, E.: Corn Plastic to the Rescue. Smithsonian Magazine. (2006) Royte, E.: Corn Plastic to the Rescue. Smithsonian Magazine. (2006)
134.
go back to reference Najafi, N., Heuzey, M.C., Carreau, P.J.: Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos. Sci. Technol 72(5), 608–615 (2012) Najafi, N., Heuzey, M.C., Carreau, P.J.: Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos. Sci. Technol 72(5), 608–615 (2012)
135.
go back to reference Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13, 321–326 (2010) Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13, 321–326 (2010)
136.
go back to reference Philip, S., Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007) Philip, S., Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)
137.
go back to reference Du, G., Si, Y., Yu, J.: Inhibitory effects of medium-chain-length fatty acid on synthesis of Polyhydroxyalkanoates from volatile fatty acid by Ralstonia eutrophus. Biotechnol. Lett. 23, 1617–1623 (2001) Du, G., Si, Y., Yu, J.: Inhibitory effects of medium-chain-length fatty acid on synthesis of Polyhydroxyalkanoates from volatile fatty acid by Ralstonia eutrophus. Biotechnol. Lett. 23, 1617–1623 (2001)
138.
go back to reference Salehizadeh, H., Van Loosdrecht, M.: Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol. Adv. 22, 261–279 (2004) Salehizadeh, H., Van Loosdrecht, M.: Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol. Adv. 22, 261–279 (2004)
139.
go back to reference Stock, U., Sakamoto, T., Hastuoka, S., Martin, D., Nagashima, M., Moran, A., Moses, M., Khalil, P., Schoen, F., Vacanti, J., Mayer, J.: Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J. Thorac. Cardiovasc. Surg. 120, 1158–1168 (2000) Stock, U., Sakamoto, T., Hastuoka, S., Martin, D., Nagashima, M., Moran, A., Moses, M., Khalil, P., Schoen, F., Vacanti, J., Mayer, J.: Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J. Thorac. Cardiovasc. Surg. 120, 1158–1168 (2000)
140.
go back to reference Valappil, S., Misra, S., Boccaccini, A., Roy, I.: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev. Med. Devices 3(6), 853–868 (2006) Valappil, S., Misra, S., Boccaccini, A., Roy, I.: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev. Med. Devices 3(6), 853–868 (2006)
141.
go back to reference Thibaut, G., Tatiana, B.: Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur. Polym. J. 48(6), 1110–1117 (2012) Thibaut, G., Tatiana, B.: Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur. Polym. J. 48(6), 1110–1117 (2012)
142.
go back to reference Bing, M., Jingjing, D., Qing, L., Zhihua, W., Wei, Y.: Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur. Polym. J. 48(1), 127–135 (2012) Bing, M., Jingjing, D., Qing, L., Zhihua, W., Wei, Y.: Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur. Polym. J. 48(1), 127–135 (2012)
Metadata
Title
Natural Polymers: Their Blends, Composites and Nanocomposites: State of Art, New Challenges and Opportunities
Authors
P. M Visakh
Aji P. Mathew
Sabu Thomas
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-20940-6_1

Premium Partners