Skip to main content
Top

2019 | OriginalPaper | Chapter

NetScore: Towards Universal Metrics for Large-Scale Performance Analysis of Deep Neural Networks for Practical On-Device Edge Usage

Author : Alexander Wong

Published in: Image Analysis and Recognition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Much of the focus in the design of deep neural networks has been on improving accuracy, leading to more powerful yet highly complex network architectures that are difficult to deploy in practical scenarios, particularly on edge devices such as mobile and other consumer devices given their high computational and memory requirements. As a result, there has been a recent interest in the design of quantitative metrics for evaluating deep neural networks that accounts for more than just model accuracy as the sole indicator of network performance. In this study, we continue the conversation towards universal metrics for evaluating the performance of deep neural networks for practical on-device edge usage. In particular, we propose a new balanced metric called NetScore, which is designed specifically to provide a quantitative assessment of the balance between accuracy, computational complexity, and network architecture complexity of a deep neural network, which is important for on-device edge operation. In what is one of the largest comparative analysis between deep neural networks in literature, the NetScore metric, the top-1 accuracy metric, and the popular information density metric were compared across a diverse set of 60 different deep convolutional neural networks for image classification on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC 2012) dataset. The evaluation results across these three metrics for this diverse set of networks are presented in this study to act as a reference guide for practitioners in the field. The proposed NetScore metric, along with the other tested metrics, are by no means perfect, but the hope is to push the conversation towards better universal metrics for evaluating deep neural networks for use in practical on-device edge scenarios to help guide practitioners in model design for such scenarios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678 (2017) Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. arXiv preprint arXiv:​1605.​07678 (2017)
4.
go back to reference Cun, Y.L., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef Cun, Y.L., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef
5.
go back to reference Cun, Y.L., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRef Cun, Y.L., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRef
6.
go back to reference Cun, Y.L., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Handwritten digit recognition with a back-propagation network. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS) (1989) Cun, Y.L., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Handwritten digit recognition with a back-propagation network. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS) (1989)
10.
11.
go back to reference He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017) He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
14.
go back to reference Howard, A., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017) Howard, A., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:​1704.​04861 (2017)
18.
go back to reference Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016) Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5 MB model size. arXiv preprint arXiv:​1602.​07360 (2016)
19.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012) Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
25.
go back to reference Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRef Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRef
26.
go back to reference Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2: inverted residuals and linear bottlenecks. arXiv preprint arXiv:1704.04861 (2017) Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2: inverted residuals and linear bottlenecks. arXiv preprint arXiv:​1704.​04861 (2017)
27.
28.
go back to reference Shafiee, M., Li, F., Chwyl, B., Wong, A.: Squishednets: squishing squeezenet further for edge device scenarios via deep evolutionary synthesis. In: NIPS (2017) Shafiee, M., Li, F., Chwyl, B., Wong, A.: Squishednets: squishing squeezenet further for edge device scenarios via deep evolutionary synthesis. In: NIPS (2017)
34.
Metadata
Title
NetScore: Towards Universal Metrics for Large-Scale Performance Analysis of Deep Neural Networks for Practical On-Device Edge Usage
Author
Alexander Wong
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-27272-2_2

Premium Partner