Skip to main content
Top
Published in: Cluster Computing 3/2019

19-09-2017

Neural information coding on small-world spiking neuronal networks modulated by spike-timing-dependent plasticity under external noise stimulation

Authors: Lei Guo, Wei Zhang, Jialei Zhang

Published in: Cluster Computing | Special Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Neural information coding is the fundamental of information processing mechanism in biological neural network. The study of neural information coding can help to understand the function of information processing in biological neural network and lay the theoretical foundation for improving bionic ability. As the abstract of a large number of real complex systems, small-world networks have the properties of biological neural networks. However, the neural information coding based on the small-world topology is rarely studied and the information transmission mechanism among the neurons is mostly excitatory regulation mechanism of spike-timing-dependent plasticity (STDP). In this paper, the small-world network is constructed and its properties are analyzed; the small-world spiking neural network based on the more complete STDP including excitatory synapse and inhibitory synapse is constructed; from the angle of firing rate of neurons and the temporal structure of the spike train, the properties of information coding on the small-world spiking neural network under the stimulations of white Gauss noise and impulse noise are analyzed respectively. Our experimental results indicate that under the same stimulation, the responses of the mean rate coding and ISI coding of the small-world network are both enhanced with the increase of stimulation intensity; under different stimulations, the mean rate coding and ISI coding of the small-world network show respective specificity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yu, K., Wang, J., Deng, B., Wei, X.L.: Synchronization of neuron population subject to steady DC electric field induced by magnetic stimulation. Cogn. Neurodyn. 7, 237–252 (2013)CrossRef Yu, K., Wang, J., Deng, B., Wei, X.L.: Synchronization of neuron population subject to steady DC electric field induced by magnetic stimulation. Cogn. Neurodyn. 7, 237–252 (2013)CrossRef
2.
go back to reference Laurent, G., Wehr, M., Davidowitz, H.: Temporal representations of odors in an olfactory network. J. Neurosci. 16, 3837 (2001)CrossRef Laurent, G., Wehr, M., Davidowitz, H.: Temporal representations of odors in an olfactory network. J. Neurosci. 16, 3837 (2001)CrossRef
3.
go back to reference Panzeri, S., Harvey, C.D., Piasini, E.: Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron 93, 491 (2017)CrossRef Panzeri, S., Harvey, C.D., Piasini, E.: Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron 93, 491 (2017)CrossRef
4.
go back to reference Parker, D.: Neuronal network analyses: premises, promises and uncertainties. Philos. Trans. R. Soc. Lond. 365, 2315–28 (2010)CrossRef Parker, D.: Neuronal network analyses: premises, promises and uncertainties. Philos. Trans. R. Soc. Lond. 365, 2315–28 (2010)CrossRef
5.
go back to reference Zemanová, L., Zamora-López, G., Zhou, C.: Complex brain networks: from topological communities to clustered dynamics. Pramana 70, 1087–1097 (2008)CrossRef Zemanová, L., Zamora-López, G., Zhou, C.: Complex brain networks: from topological communities to clustered dynamics. Pramana 70, 1087–1097 (2008)CrossRef
6.
go back to reference van Rossum, M.C.W., Turrigiano, G.G., Nelson, S.B.: Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci. 22, 1956–1966 (2002)CrossRef van Rossum, M.C.W., Turrigiano, G.G., Nelson, S.B.: Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci. 22, 1956–1966 (2002)CrossRef
7.
go back to reference Yu, H., Guo, X., Wang, J.: Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity. Physica A 419, 307–317 (2015)MathSciNetCrossRef Yu, H., Guo, X., Wang, J.: Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity. Physica A 419, 307–317 (2015)MathSciNetCrossRef
8.
go back to reference Haibo, Q.U., Su, L.U., Zhang, W.: Analysis of the characteristics of infantile small world neural network node properties correlated with the influencing factors. J. Biomed. Eng. 33, 931–938 (2016) Haibo, Q.U., Su, L.U., Zhang, W.: Analysis of the characteristics of infantile small world neural network node properties correlated with the influencing factors. J. Biomed. Eng. 33, 931–938 (2016)
9.
go back to reference Litwinkumar, A., Doiron, B.: Formation and maintenance of neuronal assemblies through synaptic plasticity. Nat. Commun. 5, 5319 (2013)CrossRef Litwinkumar, A., Doiron, B.: Formation and maintenance of neuronal assemblies through synaptic plasticity. Nat. Commun. 5, 5319 (2013)CrossRef
10.
go back to reference Rumbell, T., Denham, S.L., Wennekers, T.: A spiking self-organizing map combing STDP, oscillations and continuous learning. IEEE Trans. Neural. Netw. Learn. Syst. 25, 894–907 (2014)CrossRef Rumbell, T., Denham, S.L., Wennekers, T.: A spiking self-organizing map combing STDP, oscillations and continuous learning. IEEE Trans. Neural. Netw. Learn. Syst. 25, 894–907 (2014)CrossRef
11.
go back to reference Wei, Y., Koulakov, A.A.: Long-term memory stabilized by noise-induced rehearsal. J. Neurosci. 34, 15804–15815 (2014)CrossRef Wei, Y., Koulakov, A.A.: Long-term memory stabilized by noise-induced rehearsal. J. Neurosci. 34, 15804–15815 (2014)CrossRef
12.
go back to reference Goudar, V., Buonomano, D.V.: A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity. J. Neurophysiol. 113, 509–523 (2015)CrossRef Goudar, V., Buonomano, D.V.: A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity. J. Neurophysiol. 113, 509–523 (2015)CrossRef
13.
go back to reference Wang, R., Wu, Y., Wang, L.: Structure and dynamics of self-organized neuronal network with an improved STDP rule. Nonlinear Dynam. 1, 1–14 (2017)MathSciNetCrossRef Wang, R., Wu, Y., Wang, L.: Structure and dynamics of self-organized neuronal network with an improved STDP rule. Nonlinear Dynam. 1, 1–14 (2017)MathSciNetCrossRef
14.
go back to reference Effenberger, F., Jost, J., Levina, A.: Self-organization in balanced state networks by STDP and homeostatic plasticity. PloS Comput. Biol. 11, e1004420 (2015)CrossRef Effenberger, F., Jost, J., Levina, A.: Self-organization in balanced state networks by STDP and homeostatic plasticity. PloS Comput. Biol. 11, e1004420 (2015)CrossRef
15.
go back to reference Rumbell, T., Denham, S.L., Wennekers, T.: A spiking self-organizing map combining STDP, oscillations, and continuous learning. IEEE Trans. Neural Netw. Learn. Syst. 25, 894–907 (2014)CrossRef Rumbell, T., Denham, S.L., Wennekers, T.: A spiking self-organizing map combining STDP, oscillations, and continuous learning. IEEE Trans. Neural Netw. Learn. Syst. 25, 894–907 (2014)CrossRef
16.
go back to reference Wang, M.L., Wang, J.S.: Dynamical balance between excitation and inhibition of feedback neural circuit via inhibitory synaptic plasticity. Acta Phys. Sin. 64, 416–423 (2015) Wang, M.L., Wang, J.S.: Dynamical balance between excitation and inhibition of feedback neural circuit via inhibitory synaptic plasticity. Acta Phys. Sin. 64, 416–423 (2015)
17.
go back to reference Yu, H.T., Wang, J., Liu, Q.X., Deng, B., Wei, X.L.: Delayed feedback control of bursting synchronization in small-world neuronal networks. Neurocomputing 99, 178–187 (2013)CrossRef Yu, H.T., Wang, J., Liu, Q.X., Deng, B., Wei, X.L.: Delayed feedback control of bursting synchronization in small-world neuronal networks. Neurocomputing 99, 178–187 (2013)CrossRef
18.
go back to reference Mikkelsen, K., Imparato, A., Torcini, A.: Emergence of slow oscillations in neural networks with spike-timing dependent plasticity. Phys. Rev. Lett. 110, 208101 (2013)CrossRef Mikkelsen, K., Imparato, A., Torcini, A.: Emergence of slow oscillations in neural networks with spike-timing dependent plasticity. Phys. Rev. Lett. 110, 208101 (2013)CrossRef
19.
go back to reference Guo, L., Wang, Y., Yu, H.: Study of brain functional network based on sample entropy of EEG under magnetic stimulation at PC6 acupoint. Bio-med. Mater. Eng. 24, 1063–1069 (2014) Guo, L., Wang, Y., Yu, H.: Study of brain functional network based on sample entropy of EEG under magnetic stimulation at PC6 acupoint. Bio-med. Mater. Eng. 24, 1063–1069 (2014)
20.
go back to reference Guo, L., Wang, Y., Yu, H.: Brain functional network based on approximate entropy of EEG under magnetic stimulation at acupuncture point. Trans. CES 30, 31–38 (2015) Guo, L., Wang, Y., Yu, H.: Brain functional network based on approximate entropy of EEG under magnetic stimulation at acupuncture point. Trans. CES 30, 31–38 (2015)
21.
go back to reference Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569 (2003)CrossRef Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569 (2003)CrossRef
22.
go back to reference Srinivasa, N., Cho, Y.: Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity. Front. Comput. Neurosci. 8, 159 (2014)CrossRef Srinivasa, N., Cho, Y.: Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity. Front. Comput. Neurosci. 8, 159 (2014)CrossRef
23.
go back to reference Kleberg, F.I., Fukai, T., Gilson, M.: Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity. Front. Comput. Neurosci. 8, 53 (2014)CrossRef Kleberg, F.I., Fukai, T., Gilson, M.: Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity. Front. Comput. Neurosci. 8, 53 (2014)CrossRef
24.
go back to reference Vogels, T.P., Sprekeler, H., Zenke, F.: Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569–1573 (2011)CrossRef Vogels, T.P., Sprekeler, H., Zenke, F.: Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569–1573 (2011)CrossRef
25.
go back to reference Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2010)CrossRef Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2010)CrossRef
26.
go back to reference Perrinet, L., Delorme, A., Samuelides, M.: Networks of integrate-and-fire neuron using rank order coding A: how to implement spike time dependent Hebbian plasticity. Neurocomputing 38–40, 817–822 (2001)CrossRef Perrinet, L., Delorme, A., Samuelides, M.: Networks of integrate-and-fire neuron using rank order coding A: how to implement spike time dependent Hebbian plasticity. Neurocomputing 38–40, 817–822 (2001)CrossRef
27.
go back to reference Tsubo, Y., Isomura, Y., Fukai, T.: Power-law inter-spike interval distributions infer a conditional maximization of entropy in cortical neurons. PloS Comput. B 8, e1002461 (2012)MathSciNetCrossRef Tsubo, Y., Isomura, Y., Fukai, T.: Power-law inter-spike interval distributions infer a conditional maximization of entropy in cortical neurons. PloS Comput. B 8, e1002461 (2012)MathSciNetCrossRef
28.
go back to reference George, D., Sommer, F.T.: Computing with inter-spike interval codes in networks of integrate and fire neurons. Neurocomputings 65–66, 415–420 (2005)CrossRef George, D., Sommer, F.T.: Computing with inter-spike interval codes in networks of integrate and fire neurons. Neurocomputings 65–66, 415–420 (2005)CrossRef
29.
go back to reference Yang, Y., Ramamurthy, B., Neef, A.: Low somatic sodium conductance enhances action potential precision in time-coding auditory neuron. J. Neurosci. 36(47), 11999–12009 (2016)CrossRef Yang, Y., Ramamurthy, B., Neef, A.: Low somatic sodium conductance enhances action potential precision in time-coding auditory neuron. J. Neurosci. 36(47), 11999–12009 (2016)CrossRef
Metadata
Title
Neural information coding on small-world spiking neuronal networks modulated by spike-timing-dependent plasticity under external noise stimulation
Authors
Lei Guo
Wei Zhang
Jialei Zhang
Publication date
19-09-2017
Publisher
Springer US
Published in
Cluster Computing / Issue Special Issue 3/2019
Print ISSN: 1386-7857
Electronic ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-017-1188-6

Other articles of this Special Issue 3/2019

Cluster Computing 3/2019 Go to the issue

Premium Partner