Skip to main content
Top

2010 | OriginalPaper | Chapter

8. Neural Oscillators: Weak Coupling

Authors : G. Bard Ermentrout, David H. Terman

Published in: Mathematical Foundations of Neuroscience

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter begins the second part of the book. By now, we hope that the reader has a thorough knowledge of single cell dynamics and is ready to move onto networks. There are two main approaches to the analysis and modeling of networks of neurons. In one approach, the details of the action potentials (spikes) matter a great deal. In the second approach, we do not care about the timing of individual neurons; rather, we are concerned only with the firing rates of populations. This division is reflected in the sometimes acrimonious battles between those who believe that actual spike times matter and those who believe that the rates are all that the brain cares about. On these issues, we have our own opinions, but for the sake of the reader, we will remain agnostic and try to present both sorts of models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Agmon-Snir, C. E. Carr, and J. Rinzel. A case study for dendritic function: Improving the performance of auditory coincidence detectors. Nature, 393:268–272, 1998.CrossRef H. Agmon-Snir, C. E. Carr, and J. Rinzel. A case study for dendritic function: Improving the performance of auditory coincidence detectors. Nature, 393:268–272, 1998.CrossRef
8.
go back to reference L. Bai, X. Huang, Q. Yang, and J. Y. Wu. Spatiotemporal patterns of an evoked network oscillation in neocortical slices: Coupled local oscillators. J. Neurophysiol., 96:2528–2538, 2006.CrossRef L. Bai, X. Huang, Q. Yang, and J. Y. Wu. Spatiotemporal patterns of an evoked network oscillation in neocortical slices: Coupled local oscillators. J. Neurophysiol., 96:2528–2538, 2006.CrossRef
9.
go back to reference W. Bao and J. Y. Wu. Propagating wave and irregular dynamics: spatiotemporal patterns of cholinergic theta oscillations in neocortex in vitro. J. Neurophysiol., 90:333–341, 2003.CrossRef W. Bao and J. Y. Wu. Propagating wave and irregular dynamics: spatiotemporal patterns of cholinergic theta oscillations in neocortex in vitro. J. Neurophysiol., 90:333–341, 2003.CrossRef
20.
go back to reference P. C. Bressloff. Traveling waves and pulses in a one-dimensional network of excitable integrate-and-fire neurons. J. Math. Biol., 40:169–198, 2000.MathSciNetMATHCrossRef P. C. Bressloff. Traveling waves and pulses in a one-dimensional network of excitable integrate-and-fire neurons. J. Math. Biol., 40:169–198, 2000.MathSciNetMATHCrossRef
23.
go back to reference P. D. Brodfuehrer, E. A. Debski, B. A. O’Gara, and W. O. Friesen. Neuronal control of leech swimming. J. Neurobiol., 27:403–418, 1995.CrossRef P. D. Brodfuehrer, E. A. Debski, B. A. O’Gara, and W. O. Friesen. Neuronal control of leech swimming. J. Neurobiol., 27:403–418, 1995.CrossRef
25.
go back to reference E. Brown, J. Moehlis, and P. Holmes. On the phase reduction and response dynamics of neural oscillator populations. Neural Comput., 16:673–715, 2004.MATHCrossRef E. Brown, J. Moehlis, and P. Holmes. On the phase reduction and response dynamics of neural oscillator populations. Neural Comput., 16:673–715, 2004.MATHCrossRef
41.
go back to reference A. H. Cohen, G. B. Ermentrout, T. Kiemel, N. Kopell, K. A. Sigvardt, and T. L. Williams. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends Neurosci., 15:434–438, 1992.CrossRef A. H. Cohen, G. B. Ermentrout, T. Kiemel, N. Kopell, K. A. Sigvardt, and T. L. Williams. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends Neurosci., 15:434–438, 1992.CrossRef
51.
go back to reference S. M. Crook, G. B. Ermentrout, J. M. Bower Dendritic and synaptic effects in systems of coupled cortical oscillators. J. Comput. Neurosci., 5:315–29, 1998.MATHCrossRef S. M. Crook, G. B. Ermentrout, J. M. Bower Dendritic and synaptic effects in systems of coupled cortical oscillators. J. Comput. Neurosci., 5:315–29, 1998.MATHCrossRef
64.
go back to reference A. V. Egorov, B. N. Hamam, E. Fransén, M. E. Hasselmo, and A. A. Alonso. Graded persistent activity in entorhinal cortex neurons. Nature, 420:173–178, 2002.CrossRef A. V. Egorov, B. N. Hamam, E. Fransén, M. E. Hasselmo, and A. A. Alonso. Graded persistent activity in entorhinal cortex neurons. Nature, 420:173–178, 2002.CrossRef
69.
go back to reference G. B. Ermentrout and J. D. Cowan. Large scale spatially organized activity in neural nets. SIAM J. Appl. Math., 38(1):1–21, 1980.MathSciNetMATHCrossRef G. B. Ermentrout and J. D. Cowan. Large scale spatially organized activity in neural nets. SIAM J. Appl. Math., 38(1):1–21, 1980.MathSciNetMATHCrossRef
70.
go back to reference G. B. Ermentrout and D. Kleinfeld. Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron, 29:33–44, 2001.CrossRef G. B. Ermentrout and D. Kleinfeld. Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron, 29:33–44, 2001.CrossRef
72.
go back to reference G. B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math., 46:223–253, 1986.MathSciNet G. B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math., 46:223–253, 1986.MathSciNet
76.
go back to reference G. B. Ermentrout and J. Rinzel. Beyond a pacemaker’s entrainment limit: phase walk-through. Am. J. Physiol. Regul. Integr. Comp. Physiol., 246:102–106, 1984. G. B. Ermentrout and J. Rinzel. Beyond a pacemaker’s entrainment limit: phase walk-through. Am. J. Physiol. Regul. Integr. Comp. Physiol., 246:102–106, 1984.
84.
go back to reference C. P. Fall, E. S. Marland, J. M. Wagner, and J. J. Tyson, editors. Computational Cell Biology, volume 20 of Interdisciplinary Applied Mathematics. Springer, New York, 2002.MATH C. P. Fall, E. S. Marland, J. M. Wagner, and J. J. Tyson, editors. Computational Cell Biology, volume 20 of Interdisciplinary Applied Mathematics. Springer, New York, 2002.MATH
102.
go back to reference J. R. Gibson, M. Beierlein, and B. W. Connors. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J. Neurophysiol., 93:467–480, 2005.CrossRef J. R. Gibson, M. Beierlein, and B. W. Connors. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J. Neurophysiol., 93:467–480, 2005.CrossRef
104.
go back to reference D. Golomb and Y. Amitai. Propagating neuronal discharges in neocortical slices: computational and experimental study. J. Neurophysiol., 78:1199–1211, Sep 1997. D. Golomb and Y. Amitai. Propagating neuronal discharges in neocortical slices: computational and experimental study. J. Neurophysiol., 78:1199–1211, Sep 1997.
106.
go back to reference M. Golubitsky, I. Stewart, P. L. Buono, and J. J. Collins. Symmetry in locomotor central pattern generators and animal gaits. Nature, 401:693–695, 1999.CrossRef M. Golubitsky, I. Stewart, P. L. Buono, and J. J. Collins. Symmetry in locomotor central pattern generators and animal gaits. Nature, 401:693–695, 1999.CrossRef
107.
go back to reference C. M. Gray, P. König, A. K. Engel, and W. Singer. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338:334–337, 1989.CrossRef C. M. Gray, P. König, A. K. Engel, and W. Singer. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338:334–337, 1989.CrossRef
108.
go back to reference C. M. Gray, A. K. Engel, P. König, and W. Singer. Synchronization of oscillatory neuronal responses in cat striate cortex: temporal properties. Vis. Neurosci., 8:337–347, 1992.CrossRef C. M. Gray, A. K. Engel, P. König, and W. Singer. Synchronization of oscillatory neuronal responses in cat striate cortex: temporal properties. Vis. Neurosci., 8:337–347, 1992.CrossRef
112.
113.
go back to reference A. T. Gulledge and G. J. Stuart. Excitatory actions of GABA in the cortex. Neuron, 37:299–309, 2003.CrossRef A. T. Gulledge and G. J. Stuart. Excitatory actions of GABA in the cortex. Neuron, 37:299–309, 2003.CrossRef
115.
go back to reference J. K. Hale and H. Koçak. Dynamics and Bifurcations, volume 3 of Texts in Applied Mathematics. Springer, New York, 1991.MATHCrossRef J. K. Hale and H. Koçak. Dynamics and Bifurcations, volume 3 of Texts in Applied Mathematics. Springer, New York, 1991.MATHCrossRef
128.
go back to reference F. C. Hoppensteadt and E. M. Izhikevich. Weakly Connected Neural Networks, volume 126 of Applied Mathematical Sciences. Springer, New York, 1997.CrossRef F. C. Hoppensteadt and E. M. Izhikevich. Weakly Connected Neural Networks, volume 126 of Applied Mathematical Sciences. Springer, New York, 1997.CrossRef
131.
go back to reference J. Huguenard and D. McCormick. Electrophysiology of the Neuron: An Interactive Tutorial. Oxford University Press, Oxford, 1994. J. Huguenard and D. McCormick. Electrophysiology of the Neuron: An Interactive Tutorial. Oxford University Press, Oxford, 1994.
134.
go back to reference E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans Neural Netw., 14:1569–1572, 2003.CrossRef E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans Neural Netw., 14:1569–1572, 2003.CrossRef
147.
go back to reference J. P. Keener. Principles of Applied Mathematics: Transformation and Approximation. Advanced Book Program, Perseus Books, Cambridge, MA, revised edition, 2000.MATH J. P. Keener. Principles of Applied Mathematics: Transformation and Approximation. Advanced Book Program, Perseus Books, Cambridge, MA, revised edition, 2000.MATH
157.
go back to reference C. Koch and e. I. Segev. Methods in Neuronal Modeling: From Synapses to Networks. MIT, Cambridge, MA, 1998. C. Koch and e. I. Segev. Methods in Neuronal Modeling: From Synapses to Networks. MIT, Cambridge, MA, 1998.
159.
go back to reference N. Kopell. Toward a theory of modelling central pattern generators. In A. H. Cohen, S. Rossignol, and S. Grillner, editors, Neural Control of Rhythmic Movements in Vertebrates, pages 265–284. Wiley, New York, 1988. N. Kopell. Toward a theory of modelling central pattern generators. In A. H. Cohen, S. Rossignol, and S. Grillner, editors, Neural Control of Rhythmic Movements in Vertebrates, pages 265–284. Wiley, New York, 1988.
160.
go back to reference N. Kopell and B. Ermentrout. Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In B. Fiedler, G. Iooss, and N. Kopell, editors, Handbook of Dynamical Systems II: Towards Applications. Elsevier, Amsterdam, 2002. N. Kopell and B. Ermentrout. Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In B. Fiedler, G. Iooss, and N. Kopell, editors, Handbook of Dynamical Systems II: Towards Applications. Elsevier, Amsterdam, 2002.
164.
go back to reference V. I. Krinski and I. u. M. Kokoz. Analysis of the equations of excitable membranes. I. Reduction of the Hodgkins–Huxley equations to a 2d order system. Biofizika, 18:506–511, 1973. V. I. Krinski and I. u. M. Kokoz. Analysis of the equations of excitable membranes. I. Reduction of the Hodgkins–Huxley equations to a 2d order system. Biofizika, 18:506–511, 1973.
165.
go back to reference E. P. Krisner. Homoclinic orbit solutions of a one dimensional Wilson-Cowan type model. Electron. J. Differ. Equat., 107:30, 2008.MathSciNet E. P. Krisner. Homoclinic orbit solutions of a one dimensional Wilson-Cowan type model. Electron. J. Differ. Equat., 107:30, 2008.MathSciNet
190.
go back to reference Y. Manor, A. Bose, V. Booth, and F. Nadim. Contribution of synaptic depression to phase maintenance in a model rhythmic network. J. Neurophysiol., 90:3513–3528, Nov 2003.CrossRef Y. Manor, A. Bose, V. Booth, and F. Nadim. Contribution of synaptic depression to phase maintenance in a model rhythmic network. J. Neurophysiol., 90:3513–3528, Nov 2003.CrossRef
191.
go back to reference H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A., 95:5323–5328, 1998.CrossRef H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A., 95:5323–5328, 1998.CrossRef
195.
go back to reference J. M. Mayville, S. L. Bressler, A. Fuchs, and J. A. Kelso. Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp. Brain Res., 127:371–381, 1999.CrossRef J. M. Mayville, S. L. Bressler, A. Fuchs, and J. A. Kelso. Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp. Brain Res., 127:371–381, 1999.CrossRef
200.
go back to reference B. D. Mensh, E. Aksay, D. D. Lee, H. S. Seung, and D. W. Tank. Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback. Vis. Res., 44:711–726, 2004.CrossRef B. D. Mensh, E. Aksay, D. D. Lee, H. S. Seung, and D. W. Tank. Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback. Vis. Res., 44:711–726, 2004.CrossRef
203.
go back to reference M. Migliore, L. Messineo, and M. Ferrante. Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons. J. Comput. Neurosci., 16:5–13, 2004.CrossRef M. Migliore, L. Messineo, and M. Ferrante. Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons. J. Comput. Neurosci., 16:5–13, 2004.CrossRef
204.
go back to reference R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50(6):1645–1662, 1990.MathSciNetMATHCrossRef R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50(6):1645–1662, 1990.MathSciNetMATHCrossRef
205.
go back to reference J. D. Murray. Mathematical Biology. II, volume 18 of Interdisciplinary Applied Mathematics. Spatial models and biomedical applications. Springer, New York, third edition, 2003. J. D. Murray. Mathematical Biology. II, volume 18 of Interdisciplinary Applied Mathematics. Spatial models and biomedical applications. Springer, New York, third edition, 2003.
206.
go back to reference M. Muller and R. Wehner. Path integration in desert ants, Cataglyphis fortis. Proc. Natl. Acad. Sci. U.S.A., 85:5287–5290, 1988.CrossRef M. Muller and R. Wehner. Path integration in desert ants, Cataglyphis fortis. Proc. Natl. Acad. Sci. U.S.A., 85:5287–5290, 1988.CrossRef
209.
go back to reference R. Osan, R. Curtu, J. Rubin, and B. Ermentrout. Multiple-spike waves in a one-dimensional integrate-and-fire neural network. J. Math. Biol., 48:243–274, 2004.MathSciNetMATHCrossRef R. Osan, R. Curtu, J. Rubin, and B. Ermentrout. Multiple-spike waves in a one-dimensional integrate-and-fire neural network. J. Math. Biol., 48:243–274, 2004.MathSciNetMATHCrossRef
210.
go back to reference J. E. Paullet and G. B. Ermentrout. Stable rotating waves in two-dimensional discrete active media. SIAM J. Appl. Math., 54(6):1720–1744, 1994.MathSciNetMATHCrossRef J. E. Paullet and G. B. Ermentrout. Stable rotating waves in two-dimensional discrete active media. SIAM J. Appl. Math., 54(6):1720–1744, 1994.MathSciNetMATHCrossRef
214.
go back to reference B. Pfeuty, G. Mato, D. Golomb, and D. Hansel. Electrical synapses and synchrony: the role of intrinsic currents. J. Neurosci., 23:6280–6294, 2003. B. Pfeuty, G. Mato, D. Golomb, and D. Hansel. Electrical synapses and synchrony: the role of intrinsic currents. J. Neurosci., 23:6280–6294, 2003.
215.
go back to reference P. Pinsky and J. Rinzel. Intrinsic and network rhythmogenesis in a reduced traub model of ca3 neurons. J. Comput. Neurosci., 1:39–60, 1994.CrossRef P. Pinsky and J. Rinzel. Intrinsic and network rhythmogenesis in a reduced traub model of ca3 neurons. J. Comput. Neurosci., 1:39–60, 1994.CrossRef
218.
go back to reference D. J. Pinto, J. A. Hartings, J. C. Brumberg, and D. J. Simons. Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. Cereb. Cortex, 13:33–44, Jan 2003.CrossRef D. J. Pinto, J. A. Hartings, J. C. Brumberg, and D. J. Simons. Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. Cereb. Cortex, 13:33–44, Jan 2003.CrossRef
220.
go back to reference J. C. Prechtl, L. B. Cohen, B. Pesaran, P. P. Mitra, and D. Kleinfeld. Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. U.S.A., 94:7621–7626, 1997.CrossRef J. C. Prechtl, L. B. Cohen, B. Pesaran, P. P. Mitra, and D. Kleinfeld. Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. U.S.A., 94:7621–7626, 1997.CrossRef
235.
go back to reference R. Romo, C. D. Brody, A. Hernandez, and L. Lemus. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399:470–473, 1999.CrossRef R. Romo, C. D. Brody, A. Hernandez, and L. Lemus. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399:470–473, 1999.CrossRef
246.
go back to reference A. Shpiro, R. Curtu, J. Rinzel, and N. Rubin. Dynamical characteristics common to neuronal competition models. J. Neurophysiol., 97:462–473, 2007.CrossRef A. Shpiro, R. Curtu, J. Rinzel, and N. Rubin. Dynamical characteristics common to neuronal competition models. J. Neurophysiol., 97:462–473, 2007.CrossRef
249.
go back to reference F. Skinner, N. Kopell, and E. Marder. Mechanisms for oscillation and frequency control in networks of mutually inhibitory relaxation oscillators. J. Comput. Neurosci., 1:69–87, 1994.MATHCrossRef F. Skinner, N. Kopell, and E. Marder. Mechanisms for oscillation and frequency control in networks of mutually inhibitory relaxation oscillators. J. Comput. Neurosci., 1:69–87, 1994.MATHCrossRef
270.
go back to reference R. D. Traub, R. K. Wong, R. Miles, and H. Michelson. A model of a ca3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol., 66:635–650, 1991. R. D. Traub, R. K. Wong, R. Miles, and H. Michelson. A model of a ca3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol., 66:635–650, 1991.
273.
go back to reference M. Tsodyks, A. Uziel, and H. Markram. Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci., 20:RC50, 2000. M. Tsodyks, A. Uziel, and H. Markram. Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci., 20:RC50, 2000.
278.
go back to reference C. Van Vreeswijk, L. F. Abbott, and G. B. Ermentrout. When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci., 1:313–321, 1994.CrossRef C. Van Vreeswijk, L. F. Abbott, and G. B. Ermentrout. When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci., 1:313–321, 1994.CrossRef
282.
go back to reference X. J. Wang. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol., 79:1549–1566, 1998. X. J. Wang. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol., 79:1549–1566, 1998.
283.
go back to reference X. J. Wang. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci., 19:9587–9603, 1999. X. J. Wang. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci., 19:9587–9603, 1999.
284.
go back to reference X.-J. Wang and J. Rinzel. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput., 4:84–97, 1992.CrossRef X.-J. Wang and J. Rinzel. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput., 4:84–97, 1992.CrossRef
286.
go back to reference M. A. Whittington, R. D. Traub, and J. G. Jefferys. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373:612–615, 1995.CrossRef M. A. Whittington, R. D. Traub, and J. G. Jefferys. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373:612–615, 1995.CrossRef
Metadata
Title
Neural Oscillators: Weak Coupling
Authors
G. Bard Ermentrout
David H. Terman
Copyright Year
2010
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-0-387-87708-2_8

Premium Partner