Skip to main content
Top
Published in: Designs, Codes and Cryptography 8/2023

24-04-2023

New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes

Author: Hao Chen

Published in: Designs, Codes and Cryptography | Issue 8/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The intersection \(\textbf{C}\cap \textbf{C}^{\perp _H}\) of a linear code \(\textbf{C} \subset \textbf{F}_{q^2}^n\) and its Hermitian dual \(\textbf{C}^{\perp _H}\) is called the Hermitian hull of this code. A linear code \(\textbf{C} \subset \textbf{F}_{q^2}^n\) satisfying \(\textbf{C} \subset \textbf{C}^{\perp _H}\) is called Hermitian self-orthogonal. Many Hermitian self-orthogonal codes were given for the construction of MDS quantum error correction codes (QECCs). In this paper we prove that for a nonnegative integer h satisfying \(0 \le h \le k\), a linear Hermitian self-orthogonal \([n, k]_{q^2}\) code is equivalent to a linear h-dimension Hermitian hull code. Therefore a lot of new MDS entanglement-assisted quantum error correction (EAQEC) codes can be constructed from previous known Hermitian self-orthogonal codes. Actually our method shows that previous constructed quantum MDS codes from Hermitian self-orthogonal codes can be transformed to MDS entanglement-assisted quantum codes with nonzero consumption parameter c directly. We prove that MDS EAQEC \([[n, k, d; c]]_q\) codes with nonzero c parameters and \(d\le \frac{n+2}{2}\) exist for arbitrary length n satisfying \(n \le q^2+1\). Moreover any QECC constructed from k-dimensional Hermitian self-orthogonal codes can be transformed to k different EAQEC codes. We also prove that MDS entanglement-assisted quantum codes exist for all lengths \(n\le q^2+1\).
Literature
1.
go back to reference Allahmadi A., Alkenani A., Hijazi R., Muthana N., Özbudak F., Solé P.: New constructions of entanglement-assisted quantum codes. Cryptogr. Commun. 14, 15–27 (2022).MathSciNetMATH Allahmadi A., Alkenani A., Hijazi R., Muthana N., Özbudak F., Solé P.: New constructions of entanglement-assisted quantum codes. Cryptogr. Commun. 14, 15–27 (2022).MathSciNetMATH
2.
go back to reference Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).MathSciNetMATH Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).MathSciNetMATH
3.
go back to reference Ball S.: On large subsets of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 14, 733–748 (2012).MATH Ball S.: On large subsets of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 14, 733–748 (2012).MATH
4.
5.
go back to reference Ball S., Vilar R.: Determining when a truncated generalised Reed–Solomon code is Hermitian self-orthogonal. IEEE Trans. Inf. Theory 68, 3796–3805 (2022).MathSciNetMATH Ball S., Vilar R.: Determining when a truncated generalised Reed–Solomon code is Hermitian self-orthogonal. IEEE Trans. Inf. Theory 68, 3796–3805 (2022).MathSciNetMATH
8.
go back to reference Brun T.A., Devetak I., Hsieh M.-H.: Correcting quantum errors with entanglemnent. Science 304(5798), 436–439 (2006).MATH Brun T.A., Devetak I., Hsieh M.-H.: Correcting quantum errors with entanglemnent. Science 304(5798), 436–439 (2006).MATH
9.
go back to reference Calderbank A., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).MathSciNetMATH Calderbank A., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).MathSciNetMATH
10.
go back to reference Cao M.: MDS codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 67(12), 7964–7984 (2021).MathSciNetMATH Cao M.: MDS codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 67(12), 7964–7984 (2021).MathSciNetMATH
11.
go back to reference Chen H.: Some good quantum error-correcting codes from algebraic geometric codes. IEEE Trans. Inf. Theory 47(5), 2059–2061 (2001).MathSciNetMATH Chen H.: Some good quantum error-correcting codes from algebraic geometric codes. IEEE Trans. Inf. Theory 47(5), 2059–2061 (2001).MathSciNetMATH
13.
go back to reference Chen H., Xing C., Ling S.: Asymptotically good quantum codes exceeding the Ashikhmin–Litsyn–Tsafasman bound. IEEE Trans. Inf. Theory 47(5), 2055–2058 (2001).MATH Chen H., Xing C., Ling S.: Asymptotically good quantum codes exceeding the Ashikhmin–Litsyn–Tsafasman bound. IEEE Trans. Inf. Theory 47(5), 2055–2058 (2001).MATH
14.
go back to reference Chen H., Xing C., Ling S.: Quantum codes from concatenated algebraic geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005).MathSciNetMATH Chen H., Xing C., Ling S.: Quantum codes from concatenated algebraic geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005).MathSciNetMATH
15.
go back to reference Chen B., Ling S., Zhang G.: Applications of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1483 (2015).MathSciNetMATH Chen B., Ling S., Zhang G.: Applications of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1483 (2015).MathSciNetMATH
16.
go back to reference Chen X., Zhu S., Jiang W., Luo G.: A new family of EAQMDS codes constructed from constacyclic codes. Des. Codes Cryptogr. 89, 2179–2193 (2021).MathSciNetMATH Chen X., Zhu S., Jiang W., Luo G.: A new family of EAQMDS codes constructed from constacyclic codes. Des. Codes Cryptogr. 89, 2179–2193 (2021).MathSciNetMATH
17.
go back to reference Chen X., Zhu S., Jiang W.: Cyclic codes and some new entanglement-assisted quantum MDS codes. Des. Codes Cryptogr. 89, 2533–2551 (2021).MathSciNetMATH Chen X., Zhu S., Jiang W.: Cyclic codes and some new entanglement-assisted quantum MDS codes. Des. Codes Cryptogr. 89, 2533–2551 (2021).MathSciNetMATH
18.
go back to reference Conway J.H., Sloane N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36, 1319–1333 (1990).MathSciNetMATH Conway J.H., Sloane N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36, 1319–1333 (1990).MathSciNetMATH
19.
go back to reference Conway J.H., Pless V., Sloane N.J.A.: Self-dual codes over \(GF(3)\) and \(GF(4)\) of length not exceeding \(16\). IEEE Trans. Inf. Theory 25(3), 312–322 (1979).MATH Conway J.H., Pless V., Sloane N.J.A.: Self-dual codes over \(GF(3)\) and \(GF(4)\) of length not exceeding \(16\). IEEE Trans. Inf. Theory 25(3), 312–322 (1979).MATH
20.
go back to reference Fan Y., Zhang L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84(3), 473–492 (2017).MathSciNetMATH Fan Y., Zhang L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84(3), 473–492 (2017).MathSciNetMATH
21.
go back to reference Fang W., Fu F., Li L., Zhu S.: Euclid and Hermitian hulls of MDS codes and their application to quantum codes. IEEE Trans. Inf. Theory 66(6), 3527–3537 (2020).MATH Fang W., Fu F., Li L., Zhu S.: Euclid and Hermitian hulls of MDS codes and their application to quantum codes. IEEE Trans. Inf. Theory 66(6), 3527–3537 (2020).MATH
23.
go back to reference Galindo C., Hernando F., Ruano D.: Entanglement-assisted quantum codes from RS codes and BCH codes with extension degree two. Quantum Inf. Process. 20, 158 (2016).MATH Galindo C., Hernando F., Ruano D.: Entanglement-assisted quantum codes from RS codes and BCH codes with extension degree two. Quantum Inf. Process. 20, 158 (2016).MATH
24.
go back to reference Gao Y., Yue Q., Huang X., Zeng J.: Hulls of generalized Reed–Solomon codes via Goppa codes and their applications to quantum codes. IEEE Trans. Inf. Theory 67(10), 6619–6626 (2021).MathSciNetMATH Gao Y., Yue Q., Huang X., Zeng J.: Hulls of generalized Reed–Solomon codes via Goppa codes and their applications to quantum codes. IEEE Trans. Inf. Theory 67(10), 6619–6626 (2021).MathSciNetMATH
25.
go back to reference Grassl M., Gulliver T.A.: On self-dual MDS codes. Proc. Int. Symp. Inf. Theory, pp. 1954–1957 (2008). Grassl M., Gulliver T.A.: On self-dual MDS codes. Proc. Int. Symp. Inf. Theory, pp. 1954–1957 (2008).
26.
go back to reference Grassl M., Huber F., Winiter A.: Entropic proofs of Singleton bounds for quantum error-correcting codes. IEEE Trans. Inf. Theory 68(6), 3942–3950 (2021).MathSciNetMATH Grassl M., Huber F., Winiter A.: Entropic proofs of Singleton bounds for quantum error-correcting codes. IEEE Trans. Inf. Theory 68(6), 3942–3950 (2021).MathSciNetMATH
27.
go back to reference Gulliver T.A., Kim J.-L., Lee Y.: New MDS or near MDS codes. IEEE Trans. Inf. Theory 54(9), 4354–4360 (2008).MathSciNetMATH Gulliver T.A., Kim J.-L., Lee Y.: New MDS or near MDS codes. IEEE Trans. Inf. Theory 54(9), 4354–4360 (2008).MathSciNetMATH
28.
go back to reference Guo G., Li R.: Hermitian self-dual GRS and entended GRS codes. IEEE Commun. Lett. 25(4), 1062–1065 (2021). Guo G., Li R.: Hermitian self-dual GRS and entended GRS codes. IEEE Commun. Lett. 25(4), 1062–1065 (2021).
29.
go back to reference Guo G., Li R., Liu Y., Song H.: Duality of generalized twisted Reed–Solomon codes and Hermitian self-dual MDS and NMDS codes (2022). arXiv:2202.11457 Guo G., Li R., Liu Y., Song H.: Duality of generalized twisted Reed–Solomon codes and Hermitian self-dual MDS and NMDS codes (2022). arXiv:​2202.​11457
30.
go back to reference He X., Xu L., Chen H.: New \(q\)-ary quamtum MDS codes with distances bigger than \(\frac{q}{2}\). Quant. Inf. Process. 15, 2745–2758 (2016).MATH He X., Xu L., Chen H.: New \(q\)-ary quamtum MDS codes with distances bigger than \(\frac{q}{2}\). Quant. Inf. Process. 15, 2745–2758 (2016).MATH
31.
go back to reference Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).MATH Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).MATH
32.
go back to reference Jin L., Xing C.: Euclid and Hermitian self-orthogonal algebraic geometric codes and their applications to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2012).MATH Jin L., Xing C.: Euclid and Hermitian self-orthogonal algebraic geometric codes and their applications to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2012).MATH
33.
go back to reference Jin L., Xing C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014).MathSciNetMATH Jin L., Xing C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014).MathSciNetMATH
34.
go back to reference Kai X., Zhu S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013).MathSciNetMATH Kai X., Zhu S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013).MathSciNetMATH
35.
go back to reference Kai X., Zhu S., Li P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014).MathSciNetMATH Kai X., Zhu S., Li P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014).MathSciNetMATH
36.
go back to reference Klappenecker A., Sarvepalli P.K.: Clifford code constructions of operators quantum error correcting codes. IEEE Trans. Inf. Theory 54(12), 5760–5765 (2008).MathSciNetMATH Klappenecker A., Sarvepalli P.K.: Clifford code constructions of operators quantum error correcting codes. IEEE Trans. Inf. Theory 54(12), 5760–5765 (2008).MathSciNetMATH
37.
go back to reference Koroglu M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 1–18 (2018).MathSciNet Koroglu M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 1–18 (2018).MathSciNet
38.
39.
go back to reference Luo G., Cao X., Chen X.: MDS codes with hulls of arbitray dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019).MATH Luo G., Cao X., Chen X.: MDS codes with hulls of arbitray dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019).MATH
41.
go back to reference Luo G., Ezerman M.F., Ling S.: Entanglement-assisted and subsystem quantum codes: new propagation rule and construction (2022). arXiv:2206.09782 Luo G., Ezerman M.F., Ling S.: Entanglement-assisted and subsystem quantum codes: new propagation rule and construction (2022). arXiv:​2206.​09782
42.
go back to reference Niu Y., Yue Q., Wu Y., Hu L.: Hermitian self-dual, MDS and generalized Reed–Solomon codes. IEEE Commun. Lett. 23(5), 781–784 (2019). Niu Y., Yue Q., Wu Y., Hu L.: Hermitian self-dual, MDS and generalized Reed–Solomon codes. IEEE Commun. Lett. 23(5), 781–784 (2019).
43.
go back to reference Pereira F.R.F., Pellikaan R., La Guardia G.G., Marcos F.: Entanglement-assisted quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 67(11), 7110–7120 (2021).MathSciNetMATH Pereira F.R.F., Pellikaan R., La Guardia G.G., Marcos F.: Entanglement-assisted quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 67(11), 7110–7120 (2021).MathSciNetMATH
44.
go back to reference Rains E.M., Sloane N.J.A.: Self-dual codes. In: Pless V., Huffman W.C. (eds.) Handbook of Coding Theory, pp. 177–294. Elsevier, Amsterdam (1998). Rains E.M., Sloane N.J.A.: Self-dual codes. In: Pless V., Huffman W.C. (eds.) Handbook of Coding Theory, pp. 177–294. Elsevier, Amsterdam (1998).
45.
go back to reference Sendrier N.: Finding the permutation between equivalent linear codes. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000).MATH Sendrier N.: Finding the permutation between equivalent linear codes. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000).MATH
46.
go back to reference Shor P.W.: Scheme for redcuing decoherence in quantum memory. Phys. Rev. A 52, R2493-2496 (1995). Shor P.W.: Scheme for redcuing decoherence in quantum memory. Phys. Rev. A 52, R2493-2496 (1995).
48.
go back to reference Sok L.: Explicit constructions of MDS self-dual codes. IEEE Trans. Inf. Theory 66(6), 3603–3615 (2020).MathSciNetMATH Sok L.: Explicit constructions of MDS self-dual codes. IEEE Trans. Inf. Theory 66(6), 3603–3615 (2020).MathSciNetMATH
49.
go back to reference Steane A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. 452, 2551–2577 (1996).MathSciNetMATH Steane A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. 452, 2551–2577 (1996).MathSciNetMATH
50.
go back to reference van Lint J.H.: Introduction to the Coding Theory, GTM 86, Third and Expanded Springer, Berlin (1999). van Lint J.H.: Introduction to the Coding Theory, GTM 86, Third and Expanded Springer, Berlin (1999).
51.
go back to reference Zhang A., Feng K.: A unified approach to construct MDS self-dual codes via Reed–Solomon code. IEEE Trans. Inf. Theory 66(6), 3650–3656 (2020).MathSciNetMATH Zhang A., Feng K.: A unified approach to construct MDS self-dual codes via Reed–Solomon code. IEEE Trans. Inf. Theory 66(6), 3650–3656 (2020).MathSciNetMATH
Metadata
Title
New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
Author
Hao Chen
Publication date
24-04-2023
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 8/2023
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-023-01232-6

Other articles of this Issue 8/2023

Designs, Codes and Cryptography 8/2023 Go to the issue

Premium Partner