Skip to main content
Top
Published in: Optical and Quantum Electronics 4/2024

Open Access 01-04-2024

New optical quantum hyperbolic recursional ferromagnetic microscale

Authors: Talat Körpinar, Zeliha Körpinar

Published in: Optical and Quantum Electronics | Issue 4/2024

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we construct properties of quasi recursional normal electromagnetic flexible elastic quasi microscale beams in terms of quasi normalized operator. We give new characterizations for ferromagnetic electric normalized quasi optimistic density with quasi frame. Finally, we design optical applications for recursional electromagnetic flexible elastic quasi microscale beam with optical quasi resonator.
Notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Flexible optical waves and soft optical fibers are becoming ideal designs in fields of physical and optical monitoring, phase and geometric flux, motion, recursional microscale, optical interaction. The comprehensive optical geometric influences of electromagnetic flux are performed in vortex optical systems, optical modeling, and optical dynamics. Also, physical problems for optical waves are principally constructed by breaking on beaches, waves in rivers, ocean waves, ship waves, wave oscillations. Optical wave model describes propagation of recursional waves in diverse media with liquid flow, elastic fluid flow, lakes, rivers, and ocean (Vithya and Rajan 2020; Parto-haghighi and Manafian 2020; Arefin et al. 2022; Lu and Kim 2014; Ryu 2018; Zhong 2014; Sun et al. 2017; Körpınar et al. 2020a, b; Ricca 2005; Körpınar and Körpınar 2021; Körpınar et al. 2021, 2021a; Körpınar and Körpınar 2021b; Körpınar et al. 2021c).
Optical electromagnetic flux models are physical representations of the flow of electromagnetic energy in optical systems. Optical vortex filament models and optical electromagnetic flux models to gain insights into the behavior of electromagnetic fields in various systems (Diaz and Felix-Navarro 2004; Wang 2013; Sordo 2019; Qu 2018; Zhu 2013; Fassler and Majidi 2015; Yan 2019; Körpınar and Körpınar 2021; Körpınar et al. 2021a, b; Körpınar and Körpınar 2021; Gürbüz 2005; Körpınar and Körpınar 2021; Körpınar et al. 2021a, b; Körpınar and Körpınar 2021; Körpınar et al. 2022).
Triboelectric optical waves for recursive sensing density are presented by optical applications, optical signal detection, optical imaging, PTT, and PDT. Modeling of physical models, numerical simulations, and experimental data to develop accurate representations of optical flux systems. Advances in computational techniques have been provided for quantum models, contributing to the design and optimization of a wide range of optical systems (Yu 2017; Körpınar et al. 2022; Yu 2017; Dong 2017; He 2017; Li 2014; Zhang 2017; Luo and Wang 2019; Wang et al. 2015; Guo and Ding 2008; Vieira and Horley 2012; Hasimoto 1972; Ricca 1992; Balakrishnan et al. 1993; Barros et al. 1995, 1999; Körpınar 2020; Körpınar et al. 2020, 2021a, b; Körpınar and Körpınar 2021a, b).
The organization of our paper is as follows. First, we construct properties of quasi recursional normal electromagnetic flexible elastic quasi microscale beams in terms of quasi normalized operator. We give new characterizations for ferromagnetic electric normalized quasi optimistic density with quasi frame. Finally, we obtain optical application for recursional electrical flexible elastic quasi microscale beam with optical quasi resonator.

2 Optical quasi recursional operator

Let \(\alpha\) be quasi optical curve in the ordinary space. Then, quasi field equations are
$$\begin{aligned} \nabla _{s}\textbf{t}_{\textbf{q}}= & {} \kappa _{1}\textbf{n}_{\textbf{q} }+\kappa _{2}\textbf{b}_{\textbf{q}}, \\ \nabla _{s}\textbf{n}_{\textbf{q}}= & {} -\kappa _{1}\textbf{t}_{\textbf{q} }+\kappa _{3}\textbf{b}_{\textbf{q}}, \\ \nabla _{s}\textbf{b}_{\textbf{q}}= & {} -\kappa _{2}\textbf{t}_{\textbf{q} }-\kappa _{3}\textbf{n}_{\textbf{q}}, \end{aligned}$$
where \(\kappa _{1},\kappa _{1},\kappa _{1}\) are quasi curvatures.
Lorentz fields are given by
$$\begin{aligned} \phi (\textbf{t}_{\textbf{q}})= & {} \kappa _{1}\textbf{n}_{\textbf{q}}+\chi \textbf{b}_{\textbf{q}}, \\ \phi (\textbf{n}_{\textbf{q}})= & {} -\kappa _{1}\textbf{t}_{\textbf{q}}+\kappa _{3}\textbf{b}_{\textbf{q}}, \\ \phi (\textbf{b}_{\textbf{q}})= & {} -\chi \textbf{t}_{\textbf{q}}-\kappa _{3} \textbf{n}_{\textbf{q}}, \end{aligned}$$
where \(\chi =\phi (\textbf{t}_{\textbf{q}})\cdot \textbf{b}_{ \textbf{q}}.\) Electromagnetic fields are
$$\begin{aligned} \mathcal {B}= & {} \kappa _{3}\textbf{t}_{\textbf{q}}-\chi \textbf{n}_{\textbf{q} }+\kappa _{1}\textbf{b}_{\textbf{q}}, \\ \mathcal {E}= & {} -\frac{m}{e}\textbf{t}_{\textbf{q}}+\kappa _{1}(1-\frac{m}{e}) \textbf{n}_{\textbf{q}}\mathcal {+(}\chi -\frac{m}{e}\kappa _{2})\textbf{b}_{ \textbf{q}}, \end{aligned}$$
where mass m and electric charge e of charged particle \(\alpha\).
Putting
$$\begin{aligned} \frac{\partial \alpha }{\partial t}=\varepsilon _{1}\textbf{t}_{\textbf{q} }+\varepsilon _{2}\textbf{n}_{\textbf{q}}+\varepsilon _{3}\textbf{b}_{ \textbf{q}}, \end{aligned}$$
where \(\varepsilon _{1},\varepsilon _{2},\varepsilon _{3}\) are smooth potential.
\(\mathbf {\spadesuit }\) Flows quasi frame are
$$\begin{aligned} \nabla _{t}\textbf{t}_{\textbf{q}}= & {} \left( \varepsilon _{1}\kappa _{1} \mathbf {+}\dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-}\kappa _{3}\varepsilon _{3}\right) \textbf{n}_{\textbf{q}}+\left( \kappa _{2}\varepsilon _{1}+ \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}\right) \textbf{b}_{\textbf{q}}, \\ \nabla _{t}\textbf{n}_{\textbf{q}}= & {} -\left( \kappa _{1}\varepsilon _{1} \mathbf {-}\varepsilon _{3}\kappa _{3}\mathbf {+}\dfrac{\partial \varepsilon _{2}}{\partial s}\right) \textbf{t}_{\textbf{q}}+\vartheta \textbf{b}_{\textbf{q}}, \\ \nabla _{t}\textbf{b}_{\textbf{q}}= & {} -\left( \kappa _{2}\varepsilon _{1}+\dfrac{ \partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}\right) \textbf{t} _{\textbf{q}}-\vartheta \textbf{n}_{\textbf{q}}, \end{aligned}$$
where \(\vartheta\) is evolution potential.
\(\divideontimes\) Optical normalization quasi operators are
$$\begin{aligned} \mathcal {N}\phi (\textbf{t}_{\textbf{q}})= & {} \left( \int _{\alpha }(\kappa _{1}^{2}+\kappa _{2}\chi )d\sigma \right) \textbf{t}_{q}+\kappa _{1}\textbf{n}_{ \textbf{q}}+\chi \textbf{b}_{\textbf{q}}, \\ \mathcal {N}\phi (\textbf{n}_{\textbf{q}})= & {} \left( \int _{\alpha }\kappa _{2}\kappa _{3}d\sigma \right) \textbf{t}_{q}+\kappa _{3}\textbf{b}_{\textbf{q}}, \\ \mathcal {N}\phi (\textbf{b}_{\textbf{q}})= & {} -\left( \int _{\alpha }\kappa _{1}\kappa _{3}d\sigma \right) \textbf{t}_{q}-\kappa _{3}\textbf{n}_{\textbf{q}}, \end{aligned}$$
and
$$\begin{aligned} \mathcal{N}\mathcal{B}= & {} \left( \int _{\alpha }(-\chi \kappa _{1}+\kappa _{2}\kappa _{1})d\sigma \right) \textbf{t}_{q}-\chi \textbf{n}_{\textbf{q}}+\kappa _{1}\textbf{ b}_{\textbf{q}}, \\ \mathcal{N}\mathcal{E}= & {} \left( \int _{\alpha }\left( \kappa _{1}^{2}\left( 1-\frac{m}{e}\right) +\left( \chi -\frac{m}{e}\kappa _{2}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} +\kappa _{1}\left( 1-\frac{m}{e}\right) \textbf{n}_{\textbf{q}}+\left( \chi -\frac{m }{e}\kappa _{2}\right) \textbf{b}_{\textbf{q}}. \end{aligned}$$
Also, we get
$$\begin{aligned} \nabla _{s}\phi (\textbf{t}_{\textbf{q}})= & {} -(\kappa _{1}^{2}+\kappa _{2}\chi )\textbf{t}_{\textbf{q}}+(\dfrac{\partial }{\partial s}\kappa _{1}-\kappa _{3}\chi )\textbf{n}_{\textbf{q}}+\left( \dfrac{\partial }{\partial s} \chi +\kappa _{1}\kappa _{3}\right) \textbf{b}_{\textbf{q}}, \\ \nabla _{s}\phi (\textbf{n}_{\textbf{q}})= & {} -(\dfrac{\partial }{\partial s} \kappa _{1}+\kappa _{3}\kappa _{2})\textbf{t}_{\textbf{q}}-(\kappa _{1}^{2}+\kappa _{3}^{2})\textbf{n}_{\textbf{q}}+\left( \dfrac{\partial }{\partial s}\kappa _{3}-\kappa _{1}\kappa _{2}\right) \textbf{b}_{\textbf{q}}, \\ \nabla _{s}\phi (\textbf{b}_{\textbf{q}})= & {} (\kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi )\textbf{t}_{\textbf{q}}-(\chi \kappa _{1}+\dfrac{ \partial }{\partial s}\kappa _{3})\textbf{n}_{\textbf{q}}-\left( \chi \kappa _{2}+\kappa _{3}^{2}\right) \textbf{b}_{\textbf{q}}. \end{aligned}$$
and
$$\begin{aligned} \textbf{t}_{q}\times \nabla _{s}\phi (\textbf{t}_{\textbf{q}})= & {} \left( \dfrac{ \partial }{\partial s}\kappa _{1}-\kappa _{3}\chi \right) \textbf{b}_{\textbf{q}}-\left( \dfrac{\partial }{\partial s}\chi +\kappa _{1}\kappa _{3}\right) \textbf{n}_{ \textbf{q}}, \\ \textbf{t}_{q}\times \nabla _{s}\phi (\textbf{n}_{\textbf{q}})= & {} -\left( \kappa _{1}^{2}+\kappa _{3}^{2}\right) \textbf{b}_{\textbf{q}}-\left( \dfrac{\partial }{\partial s}\kappa _{3}-\kappa _{1}\kappa _{2}\right) \textbf{n}_{\textbf{q}}, \\ \textbf{t}_{q}\times \nabla _{s}\phi (\textbf{b}_{\textbf{q}})= & {} -\left( \chi \kappa _{1}+\dfrac{\partial }{\partial s}\kappa _{3}\right) \textbf{b}_{\textbf{q} }+(\chi \kappa _{2}+\kappa _{3}^{2})\textbf{n}_{\textbf{q}}. \end{aligned}$$
\(\divideontimes\) Optical normalization quasi operators of above product fields are
$$\begin{aligned} \mathcal {N(}\textbf{t}_{q}\times \nabla _{s}\phi (\textbf{t}_{\textbf{q}}))= & {} \left( \int _{\alpha }\left( -\left( \dfrac{\partial }{\partial s}\chi +\kappa _{1}\kappa _{3}\right) \kappa _{1}+\left( \dfrac{\partial }{\partial s}\kappa _{1}-\kappa _{3}\chi \right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} -\left( \dfrac{\partial }{\partial s}\chi +\kappa _{1}\kappa _{3}\right) \textbf{n}_{ \textbf{q}}+\left( \dfrac{\partial }{\partial s}\kappa _{1}-\kappa _{3}\chi \right) \textbf{b}_{\textbf{q}}, \\ \mathcal {N(}\textbf{t}_{q}\times \nabla _{s}\phi (\textbf{n}_{\textbf{q}}))= & {} \left( \int _{\alpha }\left( -\left( \dfrac{\partial }{\partial s}\kappa _{3}-\kappa _{1}\kappa _{2}\right) \kappa _{1}-\left( \kappa _{1}^{2}+\kappa _{3}^{2}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} -\left( \dfrac{\partial }{\partial s}\kappa _{3}-\kappa _{1}\kappa _{2}\right) \textbf{n }_{\textbf{q}}-(\kappa _{1}^{2}+\kappa _{3}^{2})\textbf{b}_{\textbf{q}}, \\ \mathcal {N(}\textbf{t}_{q}\times \nabla _{s}\phi (\textbf{b}_{\textbf{q}}))= & {} \left( \int _{\alpha }\left( \left( \chi \kappa _{2}+\kappa _{3}^{2}\right) \kappa _{1}-\left( \chi \kappa _{1}+\dfrac{\partial }{\partial s}\kappa _{3}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} +\left( \chi \kappa _{2}+\kappa _{3}^{2}\right) \textbf{n}_{\textbf{q}}-\left( \chi \kappa _{1}+\dfrac{\partial }{\partial s}\kappa _{3}\right) \textbf{b}_{\textbf{q}}. \end{aligned}$$
Then
$$\begin{aligned} \mathcal {R(}\phi (\textbf{t}_{\textbf{q}}))= & {} -\left( \int _{\alpha }\left( -\left( \dfrac{ \partial }{\partial s}\chi +\kappa _{1}\kappa _{3}\right) \kappa _{1}+\left( \dfrac{ \partial }{\partial s}\kappa _{1}-\kappa _{3}\chi \right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} +\left( \dfrac{\partial }{\partial s}\chi +\kappa _{1}\kappa _{3}\right) \textbf{n}_{ \textbf{q}}-\left( \dfrac{\partial }{\partial s}\kappa _{1}-\kappa _{3}\chi \right) \textbf{b}_{\textbf{q}}, \\ \mathcal {R(}\phi (\textbf{n}_{\textbf{q}}))= & {} -\left( \int _{\alpha }\left( -\left( \dfrac{ \partial }{\partial s}\kappa _{3}-\kappa _{1}\kappa _{2}\right) \kappa _{1}-\left( \kappa _{1}^{2}+\kappa _{3}^{2}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} +\left( \dfrac{\partial }{\partial s}\kappa _{3}-\kappa _{1}\kappa _{2}\right) \textbf{n }_{\textbf{q}}+\left( \kappa _{1}^{2}+\kappa _{3}^{2}\right) \textbf{b}_{\textbf{q}}, \\ \mathcal {R(}\phi (\textbf{b}_{\textbf{q}}))= & {} -\left( \int _{\alpha }\left( \left( \chi \kappa _{2}+\kappa _{3}^{2}\right) \kappa _{1}-\left( \chi \kappa _{1}+\dfrac{\partial }{ \partial s}\kappa _{3}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} -\left( \chi \kappa _{2}+\kappa _{3}^{2}\right) \textbf{n}_{\textbf{q}}\\{} & {} +\left( \chi \kappa _{1}+\dfrac{\partial }{\partial s}\kappa _{3}\right) \textbf{b}_{\textbf{q}}. \end{aligned}$$
For electromagnetic fields, we get
$$\begin{aligned} \nabla _{s}\mathcal {B}= & {} \left( \dfrac{\partial }{\partial s}\kappa _{3}+\chi \kappa _{1}-\kappa _{2}\kappa _{1}\right) \textbf{t}_{\textbf{q}}+\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \textbf{n}_{\textbf{q}} \\{} & {} +\left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \textbf{b}_{\textbf{q}} \\ \nabla _{s}\mathcal {E}= & {} -\left( \kappa _{1}^{2}\left( 1-\frac{m}{e}\right) +\kappa _{2} \left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \textbf{t}_{\textbf{q}}+\left( \dfrac{ \partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e} \right. \\{} & {} -\left. \kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \textbf{n}_{\textbf{q} }+\left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \textbf{b} _{\textbf{q}} \end{aligned}$$
and
$$\begin{aligned} \textbf{t}_{q}\times \nabla _{s}\mathcal {B}= & {} -\left( \dfrac{\partial }{\partial s }\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \textbf{n}_{\textbf{q} }+\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \textbf{b}_{\textbf{q}}, \\ \textbf{t}_{q}\times \nabla _{s}\mathcal {E}= & {} -\left( \dfrac{\partial }{ \partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e} \right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \textbf{n}_{\textbf{q}} \\{} & {} +\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{ m}{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \textbf{b}_{ \textbf{q}}. \end{aligned}$$
\(\divideontimes\) Optical normalization quasi operators of above product fields are
$$\begin{aligned} \mathcal {N(}\textbf{t}_{q}\times \nabla _{s}\mathcal {B)}= & {} \left( \int _{\alpha }\left( -\left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}-\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{ \partial s}\chi -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} -\left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \textbf{n}_{\textbf{q}}+\left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \textbf{b}_{\textbf{q}} \\ \mathcal {N}(\textbf{t}_{q}\times \nabla _{s}\mathcal {E})= & {} \left( \int _{\alpha }\left( - \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \kappa _{1}+\left( \dfrac{\partial }{\partial s}\kappa _{1}(1 \right. \right. \right. \\{} & {} \left. \left. \left. -\frac{m}{e})-\kappa _{1}\frac{m}{e}-\kappa _{3}(\chi -\frac{m}{e }\kappa _{2})\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q}\mathcal {-}\left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1 -\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \textbf{n}_{\textbf{q}}+\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e }-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \textbf{b}_{\textbf{q} }. \end{aligned}$$
\(\divideontimes\) Recursional quasi operators of above product electromagnetic fields are
$$\begin{aligned} \mathcal {R(B})= & {} \left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} +\left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \textbf{n}_{\textbf{q}}-\left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \textbf{b}_{\textbf{q}} \\ \mathcal {R(E)}= & {} \left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s} \left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) \right. \right. \right. \\{} & {} \left. \left. \left. -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q}\mathcal {+}\left( \dfrac{\partial }{ \partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e} \right) \kappa _{3} \right. \\{} & {} \left. -\frac{m}{e}\kappa _{2}\right) \textbf{n}_{\textbf{q}}-\left( \dfrac{\partial }{ \partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3} \left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \textbf{b}_{\textbf{q}}. \end{aligned}$$

2.1 Recursional electromagnetical \(\phi (\textbf{t}_{\textbf{q}})\) microscale beam

\(\divideontimes\) Quasi \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\) recursional magnetical \(\phi (\textbf{t}_{\textbf{q}})\) flexible elastic quasi \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\)microscale beam for quasi normal fiber is
$$\begin{aligned} _{qn}^{\mathcal {B}}\mathcal{R}\mathcal{M}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }={\mathcal {V}}_{b}^{qn}\int \int _{\mathcal {F}} {{\mathcal R}({\mathcal B}}) {\cdot {\mathcal N}} \nabla _{t}\phi \left( \textbf{t}_{\textbf{q}}\right) d{\mathcal {F}}, \end{aligned}$$
where \(\mathcal {V}_{b}^{qn}\) is recursional quasi magnetic \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\)flexibility potential.
Firstly, normalized operator of flexible \(\phi (\textbf{t}_{\textbf{q}})\) is
$$\begin{aligned} \mathcal {N}\nabla _{t}\phi \left( \textbf{t}_{\textbf{q}}\right)= & {} \left( \int _{\alpha }\left( \left( -\vartheta \chi +\dfrac{\partial \kappa _{1}}{\partial t}\right) \kappa _{1}+\left( \vartheta \kappa _{1}+\dfrac{\partial \chi }{\partial t}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \\{} & {} +\left( -\vartheta \chi +\dfrac{\partial \kappa _{1}}{\partial t}\right) \textbf{n}_{ \textbf{q}}+\left( \vartheta \kappa _{1}+\dfrac{\partial \chi }{\partial t}\right) \textbf{b}_{\textbf{q}}. \end{aligned}$$
where \(\vartheta =\nabla _{t}\textbf{n}_{\textbf{q}}\cdot \textbf{b}_{ \textbf{q}}.\)
\(\divideontimes\) Quasi optical \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\) flexible electroosmotic magnetical \(\phi (\textbf{t}_{\textbf{q}})\) normalized quasi optimistical density is
$$\begin{aligned}{} & {} ^{\mathcal {B}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }=\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi \right. \right. \right. \\{} & {} \left. \left. \left. -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( -\vartheta \chi +\dfrac{\partial \kappa _{1}}{\partial t}\right) \kappa _{1}+\left( \vartheta \kappa _{1}+\dfrac{\partial \chi }{\partial t}\right) \kappa _{2}\right) d\sigma \right) +\left( -\vartheta \chi \right. \\{} & {} \left. +\dfrac{\partial \kappa _{1}}{\partial t}\right) \left( \dfrac{\partial }{\partial s} \kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) -\left( \kappa _{3}\kappa _{1}- \dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \left( \vartheta \kappa _{1}+\dfrac{\partial \chi }{\partial t}\right) . \end{aligned}$$
\(\divideontimes\) Quasi recursional normal magnetical \(\phi ( \textbf{t}_{\textbf{q}})\) flexible elastic quasi \(\mathbb {Q} \textbf{n}_{\textbf{q}}-\)microscale beam is
$$\begin{aligned}{} & {} ^{\mathcal {B}}\mathcal{R}\mathcal{M}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }= \mathcal {V}_{b}^{qn}\int \int _{\mathcal {F}}\left( -\left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \left( \vartheta \kappa _{1}+ \dfrac{\partial \chi }{\partial t}\right) \right. \\{} & {} \left. +\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( -\vartheta \chi +\dfrac{\partial \kappa _{1}}{\partial t}\right) \kappa _{1}+\left( \vartheta \kappa _{1}+\dfrac{\partial \chi }{\partial t}\right) \kappa _{2}\right) d\sigma \right) \right. \\{} & {} \left. +\left( -\vartheta \chi +\dfrac{\partial \kappa _{1}}{\partial t}\right) \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \right) d\mathcal {F}, \end{aligned}$$
where \(\mathcal {V}_{b}^{qn}\) is recursional quasi normal magnetic \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\)flexibility potential.
\(\divideontimes\) Quasi recursional ferromagnetic normal magnetical \(\phi (\textbf{t}_{\textbf{q}})\) flexible elastic quasi microscale beam is
$$\begin{aligned} ^{\mathcal {B}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }^{*}={\mathcal {V}}_{b}^{qn}\int \int _{\mathcal {F}} {{\mathcal R}({\mathcal B})}{ \cdot {\mathcal N}(}\phi \left( \textbf{t}_{\textbf{q}}\right) \times \nabla _{\textbf{t}_{\textbf{q} }}^{2}\phi (\textbf{t}_{\textbf{q}}))d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{b}^{qn}\) is recursional quasi normal magnetic flexibility potential.
By quasi model, we get
$$\begin{aligned}{} & {} \mathcal {N}\left( \phi \left( \textbf{t}_{\textbf{q}}\right) \times \nabla _{\textbf{t}_{ \textbf{q}}}\phi \left( \textbf{t}_{\textbf{q}}\right) \right) =\left( \int _{\alpha }\left( -\chi \left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \kappa _{1}+\kappa _{1}\left( \kappa _{1}^{2}\right. \right. \right. \\{} & {} \left. \left. \left. \mathbf {+}\kappa _{2}\chi \right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q}-\chi \left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \textbf{n}_{\textbf{q}}\mathbf {+}\kappa _{1}\left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \textbf{b}_{\textbf{q}}. \end{aligned}$$
Optical ferromagnetic \(\phi (\textbf{t}_{\textbf{q}})\) magnetic \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\)optimistic density, we obtain
$$\begin{aligned}{} & {} ^{\mathcal {B}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }^{*}=\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}- \dfrac{\partial }{\partial s}\chi \right. \right. \right. \\{} & {} \left. \left. \left. -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( -\chi \left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \kappa _{1}+\kappa _{1}\left( \kappa _{1}^{2} \mathbf {+}\kappa _{2}\chi \right) \kappa _{2}\right) d\sigma \right) -\chi \left( \kappa _{1}^{2} \right. \\{} & {} \left. \mathbf {+}\kappa _{2}\chi \right) \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) -\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \kappa _{1}\left( \kappa _{1}^{2}\mathbf { +}\kappa _{2}\chi \right) . \end{aligned}$$
\(\divideontimes\) Quasi recursional ferromagnetic normal magnetical \(\phi \left( \textbf{t}_{\textbf{q}}\right)\) viscoelastic quasi microscale beam is
$$\begin{aligned}{} & {} ^{\mathcal {B}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }^{*}={\mathcal {V}}_{b}^{qn}\int \int _{{\mathcal {F}}}\left( -\chi \left( \kappa _{1}^{2} \mathbf {+}\kappa _{2}\chi \right) \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \right. \\{} & {} \left. +\left( \int _{\alpha }\left( \left( \dfrac{\partial }{ \partial s}\kappa _{1} \right. \right. \right. \right. \\{} & {} \left. \left. \left. -\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}- \dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( -\chi \left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \kappa _{1} \right. \right. \\{} & {} \left. \left. \left. +\kappa _{1}\left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \kappa _{2}\right) d\sigma \right) -\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \kappa _{1}\left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \right) d {\mathcal {F}}. \end{aligned}$$
\(\divideontimes\) Quasi recursional normal electrical \(\phi ( \textbf{t}_{\textbf{q}})\) flexible elastic quasi \(\mathbb {Q} \textbf{n}_{\textbf{q}}-\)microscale beam is
$$\begin{aligned} ^{\mathcal {E}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{t}_{\textbf{q}}\right) } {\mathcal {V}}_{\varepsilon }^{qn}\int \int _{{\mathcal {F}}}{{\mathcal R}({\mathcal E}}){ \cdot {\mathcal N}}\nabla _{t}\phi \left( \textbf{t}_{\textbf{q}}\right) d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{\varepsilon }^{qn}\) is recursional quasi normal magnetic electric potential.
\(\divideontimes\) Optical quasi flexible \(\mathbb {Q}\textbf{n}_{ \textbf{q}}-\)electroosmotic electrical \(\phi (\textbf{t}_{\textbf{q }})\) normalized \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\) optimistic density is
$$\begin{aligned}{} & {} ^{\mathcal {E}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }=\left( \int _{\alpha }\left( \left( -\vartheta \chi +\dfrac{\partial \kappa _{1}}{\partial t} \right) \kappa _{1}+\left( \vartheta \kappa _{1}+\dfrac{\partial \chi }{\partial t} \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s }\left( \chi \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e} \kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{ e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) +\left( -\vartheta \chi +\dfrac{ \partial \kappa _{1}}{\partial t}\right) \left( \dfrac{\partial }{\partial s} \left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3} \right. \\{} & {} \left. -\frac{m}{e}\kappa _{2}\right) -(\dfrac{\partial }{\partial s}\kappa _{1}(1-\frac{m }{e})-\kappa _{1}\frac{m}{e}-\kappa _{3}(\chi -\frac{m}{e}\kappa _{2}))(\vartheta \kappa _{1}+\dfrac{\partial \chi }{\partial t}). \end{aligned}$$
\(\divideontimes\) Quasi recursional normal electrical \(\phi ( \textbf{t}_{\textbf{q}})\) flexible elastic quasi microscale beam is
$$\begin{aligned}{} & {} ^{\mathcal {E}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }= {\mathcal {V}}_{\varepsilon }^{qn}\int \int _{{\mathcal {F}}}\left( -\left( \dfrac{\partial }{ \partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3} \left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \left( \vartheta \kappa _{1}+\dfrac{ \partial \chi }{\partial t}\right) \right. \\{} & {} \left. +\left( \int _{\alpha }\left( \left( -\vartheta \chi +\dfrac{\partial \kappa _{1}}{\partial t} \right) \kappa _{1}+\left( \vartheta \kappa _{1}+\dfrac{\partial \chi }{\partial t} \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s }\left( \chi -\frac{m}{e}\kappa _{2}\right) \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. +\kappa _{1}(1-\frac{m}{e})\kappa _{3}-\frac{m}{e}\kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e }-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \right. \\{} & {} \left. +\left( -\vartheta \chi +\dfrac{\partial \kappa _{1}}{\partial t}\right) \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \right) d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{\varepsilon }^{qn}\) is recursional quasi normal magnetic electric potential.
Normalized quasi ferromagnetic \(\phi (\textbf{t}_{\textbf{q}})\) electric quasi optimistic density is
$$\begin{aligned}{} & {} ^{\mathcal {E}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }^{*}=-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{1}\left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \\{} & {} +\left( \int _{\alpha }\left( -\chi \left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \kappa _{1}+\kappa _{1}\left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s} \left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1 \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3} \left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \\{} & {} -\chi \left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{ e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) . \end{aligned}$$
\(\divideontimes\) Quasi recursional ferromagnetic normal electrical \(\phi (\textbf{t}_{\textbf{q}})\) flexible elastic quasi microscale beam is
$$\begin{aligned}{} & {} ^{\mathcal {E}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }^{*}={\mathcal {V}}_{\varepsilon }^{qn}\int \int _{{\mathcal {F}}}\left( -\chi \left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) \left( \dfrac{\partial }{ \partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e} \right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \right. \\{} & {} \left. -\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m }{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{1}\left( \kappa _{1}^{2}\mathbf {+}\kappa _{2}\chi \right) +\left( \int _{\alpha }\left( -\chi \left( \kappa _{1}^{2}\right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. \mathbf {+}\kappa _{2}\chi \right) \kappa _{1}+\kappa _{1}\left( \kappa _{1}^{2}\mathbf {+} \kappa _{2}\chi \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{ \partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1- \frac{m}{e}\right) \kappa _{3} \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\frac{m}{e}\kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{ m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \right) d{\mathcal {F}}. \end{aligned}$$
Optical quasi model for ferromagnetical normal recursional electric \(\phi (\textbf{t}_{\textbf{q}})\) flexible elastic quasi \(\mathbb {Q}\textbf{ n}_{\textbf{q}}-\)microscale beam with optical ring quasi resonator is illustrated in Fig. 1.

2.2 Recursional electromagnetical \(\phi (\textbf{n}_{\textbf{q}})\) microscale beam

\(\divideontimes\) Quasi recursional normal magnetic \(\phi (\textbf{ n}_{\textbf{q}})\) flexible elastic quasi \(\mathbb {Q}\textbf{n}_{ \textbf{q}}-\)microscale beam is presented
$$\begin{aligned} {^{\mathcal{B}}} {\mathcal{RM}}_{\phi( \textbf{n}_{\textbf{q}})} = {\mathcal {V}}_{b}^{qn}\int \int _{{\mathcal {F}}}\mathcal{R(B}) \cdot \mathcal {N} \nabla_{t}\phi \left( \textbf{n}_{\textbf{q}}\right) d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{b}^{qn}\) is recursional quasi normal magnetic \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\)flexibility potential.
Quasi normalize operator for flexible \(\phi (\textbf{n}_{\textbf{q}})\) is
$$\begin{aligned}{} & {} \mathcal {N}\nabla _{t}\phi \left( \textbf{n}_{\textbf{q}}\right) =\left( \int _{\alpha }\left( -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-}\varepsilon _{3}\kappa _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \kappa _{1}+\vartheta \kappa _{3}\right) \kappa _{1}+\left( \dfrac{\partial \kappa _{3}}{\partial t}\right. \right. \right. \\{} & {} \left. \left. \left. -\kappa _{1}\left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) \kappa _{2}\right) d\sigma \right) \textbf{t} _{q}-\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-}\varepsilon _{3}\kappa _{3} \right. \right. \\{} & {} \left. \left. \mathbf {+}\kappa _{1}\varepsilon _{1}\right) \kappa _{1}+\vartheta \kappa _{3}\right) \textbf{n}_{\textbf{q}}+\left( \dfrac{\partial \kappa _{3}}{\partial t} -\kappa _{1}\left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) \textbf{b}_{\textbf{q}}. \end{aligned}$$
Magnetic normalize quasi \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\)optimistic density is
$$\begin{aligned}{} & {} ^{\mathcal {B}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{n}_{\textbf{q}}\right) }=\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi \right. \right. \right. \\{} & {} \left. \left. \left. -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( -\left( \left( \dfrac{ \partial \varepsilon _{2}}{\partial s}\mathbf {-}\varepsilon _{3}\kappa _{3} \mathbf {+}\kappa _{1}\varepsilon _{1}\right) \kappa _{1}+\vartheta \kappa _{3}\right) \kappa _{1}+\left( \dfrac{\partial \kappa _{3}}{\partial t}\right. \right. \right. \\{} & {} \left. \left. \left. -\kappa _{1}\left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) \kappa _{2}\right) d\sigma \right) -\left( \dfrac{ \partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-}\varepsilon _{3}\kappa _{3}\right. \right. \\{} & {} \left. \left. \mathbf {+}\kappa _{1}\varepsilon _{1}\right) \kappa _{1}+\vartheta \kappa _{3}\right) -\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \left( \dfrac{\partial \kappa _{3}}{\partial t}-\kappa _{1}\left( \dfrac{ \partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) \end{aligned}$$
\(\divideontimes\) Quasi recursional normal magnetical \(\phi ( \textbf{n}_{\textbf{q}})\) flexible elastic quasi microscale beam is
$$\begin{aligned}{} & {} ^{\mathcal {B}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{n}_{\textbf{q}}\right) }= {\mathcal {V}}_{b}^{qn}\int \int _{{\mathcal {F}}}\left( -\left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \left( \dfrac{\partial \kappa _{3}}{\partial t}-\kappa _{1}\left( \dfrac{\partial \varepsilon _{3}}{\partial s} \right. \right. \right. \\{} & {} \left. \left. \left. +\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) +\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}\right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s }\mathbf {-}\varepsilon _{3}\kappa _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \kappa _{1}\right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. +\vartheta \kappa _{3}\right) \kappa _{1}+\left( \dfrac{\partial \kappa _{3}}{\partial t} -\kappa _{1}\left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) \kappa _{2}\right) d\sigma \right) \right. \\{} & {} \left. -\left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s} \mathbf {-}\varepsilon _{3}\kappa _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \kappa _{1}+\vartheta \kappa _{3}\right) \right) d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{b}^{qn}\) is recursional quasi normal magnetic \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\)flexibility potential.
\(\divideontimes\) Quasi recursional ferromagnetic normal magnetical \(\phi (\textbf{n}_{\textbf{q}})\) flexible elastic quasi microscale beam is presented
$$\begin{aligned} ^{\mathcal {B}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }^{*}={\mathcal {V}}_{b}^{qn}\int \int _{{\mathcal {F}}}\mathcal {R(B}){ \cdot {\mathcal N}(}\phi (\textbf{n}_{\textbf{q}})\times \nabla _{\textbf{t}_{\textbf{q} }}^{2}\phi (\textbf{n}_{\textbf{q}}))d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{b}^{qn}\) is recursional quasi normal magnetic flexibility potential.
Normalized calculations, we get
$$\begin{aligned}{} & {} \mathcal {N}\left( \phi \left( \textbf{n}_{\textbf{q}}\right) \times \nabla _{\textbf{t}_{ \textbf{q}}}^{2}\phi \left( \textbf{n}_{\textbf{q}}\right) \right) =\left( \int _{\alpha }\left( \left( \kappa _{1}\left( \dfrac{\partial \kappa _{3}}{\partial s}-\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{\partial \kappa _{1}}{\partial s}+\kappa _{2}\kappa _{3}\right) \right) \kappa _{1}\right. \right. \\{} & {} \left. \left. +\left( \kappa _{1}^{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}\kappa _{2}\right) d\sigma \right) \textbf{t}_{q}+\left( \kappa _{1}\left( \dfrac{\partial \kappa _{3}}{\partial s}-\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{\partial \kappa _{1}}{\partial s}+\kappa _{2}\kappa _{3}\right) \right) \textbf{n}_{\textbf{q}}+\left( \kappa _{1}^{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}\textbf{b}_{\textbf{q}}. \end{aligned}$$
Ferromagnetic quasi normalized \(\phi (\textbf{n}_{\textbf{q}})\) optimistic density is
$$\begin{aligned}{} & {} ^{\mathcal {B}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{n}_{\textbf{q}}\right) }^{*}=\left( \int _{\alpha }\left( \left( \kappa _{1}\left( \dfrac{\partial \kappa _{3}}{\partial s}-\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{\partial \kappa _{1}}{\partial s}+\kappa _{2}\kappa _{3}\right) \right) \kappa _{1}+\left( \kappa _{1}^{2} \right. \right. \right. \\{} & {} \left. \left. \left. \mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}\kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi \right. \right. \right. \\{} & {} \left. \left. \left. -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) +\left( \kappa _{1}\left( \dfrac{\partial \kappa _{3}}{\partial s}-\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{\partial \kappa _{1}}{\partial s}+\kappa _{2}\kappa _{3}\right) \right) \left( \dfrac{\partial }{\partial s}\kappa _{1}\right. \\{} & {} \left. -\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) -\left( \kappa _{1}^{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s} \chi -\kappa _{3}\kappa _{1}\right) . \end{aligned}$$
\(\divideontimes\) Quasi recursional ferromagnetic normal magnetical \(\phi (\textbf{n}_{\textbf{q}})\) flexible elastic quasi microscale beam is
$$\begin{aligned}{} & {} ^{\mathcal {B}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{t}_{\textbf{q}}\right) }^{*}={\mathcal {V}}_{b}^{qn}\int \int _{{\mathcal {F}}}\left( \left( \kappa _{1}\left( \dfrac{ \partial \kappa _{3}}{\partial s}-\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{ \partial \kappa _{1}}{\partial s}+\kappa _{2}\kappa _{3}\right) \right) \left( \dfrac{\partial }{ \partial s}\kappa _{1} \right. \right. \\{} & {} \left. \left. -\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) +\left( \int _{\alpha }\left( \left( \kappa _{1}\left( \dfrac{\partial \kappa _{3}}{\partial s}-\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{\partial \kappa _{1}}{\partial s}+\kappa _{2}\kappa _{3}\right) \right) \kappa _{1}+\left( \kappa _{1}^{2} \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. \mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}\kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) -\left( \kappa _{1}^{2}\mathbf {+} \kappa _{3}^{2}\right) \kappa _{1}\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{ \partial s}\chi -\kappa _{3}\kappa _{1}\right) \right) d{\mathcal {F}}. \end{aligned}$$
\(\divideontimes\) Quasi recursional normal electrical \(\phi ( \textbf{n}_{\textbf{q}})\) quasi microscale beam is presented
$$\begin{aligned} ^{\mathcal {E}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{n}_{\textbf{q}}\right) }= {\mathcal {V}}_{\varepsilon }^{qn}\int \int _{{\mathcal {F}}}{{\mathcal R}({\mathcal E}}){ \cdot {\mathcal N}}\nabla _{t}\phi \left( \textbf{n}_{\textbf{q}}\right) d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{\varepsilon }^{qn}\) is recursional quasi normal magnetic electric potential.
Quasi normalize electric \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\)optimistic \(\phi (\textbf{n}_{\textbf{q}})\) density is
$$\begin{aligned}{} & {} ^{\mathcal {E}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{n}_{\textbf{q}}\right) }=\left( \int _{\alpha }\left( -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s} \mathbf {-}\varepsilon _{3}\kappa _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \kappa _{1}+\vartheta \kappa _{3}\right) \kappa _{1}+\left( \dfrac{\partial \kappa _{3}}{\partial t}-\kappa _{1}\left( \dfrac{\partial \varepsilon _{3}}{\partial s}\right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. +\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s} \left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \kappa _{1} \right. \right. \\{} & {} \left. \left. -\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m }{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-} \varepsilon _{3}\kappa _{3}\right. \right. \\{} & {} \left. \left. \mathbf {+}\kappa _{1}\varepsilon _{1}\right) \kappa _{1}+\vartheta \kappa _{3}\right) \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) -\left( \dfrac{ \partial }{\partial s}\kappa _{1}\left( 1\right. \right. \\{} & {} \left. \left. -\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{m}{e} \kappa _{2}\right) \right) \left( \dfrac{\partial \kappa _{3}}{\partial t}-\kappa _{1}\left( \dfrac{ \partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) . \end{aligned}$$
\(\divideontimes\) Quasi recursional normal electrical \(\phi ( \textbf{n}_{\textbf{q}})\) flexible elastic quasi microscale beam is presented
$$\begin{aligned}{} & {} ^{\mathcal {E}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{n}_{\textbf{q}}\right) }= {\mathcal {V}}_{\varepsilon }^{qn}\int \int _{{\mathcal {F}}}\left( -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\ \mathbf {-}\varepsilon _{3}\kappa _{3}\mathbf {+ }\kappa _{1}\varepsilon _{1}\right) \kappa _{1}+\vartheta \kappa _{3}\right) \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right. \right. \\{} & {} \left. \left. +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) +\left( \int _{\alpha }\left( -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-} \varepsilon _{3}\kappa _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \kappa _{1}+\vartheta \kappa _{3}\right) \kappa _{1}\right. \right. \right. \\{} & {} \left. \left. \left. +\left( \dfrac{\partial \kappa _{3}}{\partial t}-\kappa _{1}\left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{ \partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1- \frac{m}{e}\right) \kappa _{3}\right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\frac{m}{e}\kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{ m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \right. \\{} & {} \left. -\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m }{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \left( \dfrac{\partial \kappa _{3}}{\partial t}-\kappa _{1}\left( \dfrac{\partial \varepsilon _{3}}{ \partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right) \right) d {\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{\varepsilon }^{qn}\) is recursional quasi normal magnetic electric potential.
Electric quasi optimistic density is
$$\begin{aligned}{} & {} ^{\mathcal {E}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{n}_{\textbf{q}}\right) }^{*}=\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{ e}\kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m }{e}\right) \right. \right. \right. \\{} & {} \left. \left. \left. -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \kappa _{1}\left( \dfrac{\partial \kappa _{3}}{\partial s}-\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{\partial \kappa _{1}}{\partial s}+\kappa _{2}\kappa _{3}\right) \right) \kappa _{1}\right. \right. \\{} & {} \left. \left. +\left( \kappa _{1}^{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}\kappa _{2}\right) d\sigma \right) +\left( \kappa _{1}\left( \dfrac{\partial \kappa _{3}}{\partial s}-\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{\partial \kappa _{1}}{\partial s}+\kappa _{2}\kappa _{3}\right) \right) \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e} \kappa _{2}\right) \right. \\{} & {} \left. +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) -\left( \dfrac{ \partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e} -\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \left( \kappa _{1}^{2}\mathbf { +}\kappa _{3}^{2}\right) \kappa _{1}. \end{aligned}$$
\(\divideontimes\) Optical ferromagnetical recursional electrical \(\phi (\textbf{n}_{\textbf{q}})\) flexible elastic quasi \(\mathbb {Q} \textbf{n}_{\textbf{q}}-\)microscale beam is constructed
$$\begin{aligned}{} & {} ^{\mathcal {E}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{n}_{\textbf{q}}\right) }^{*}={\mathcal {V}}_{\varepsilon }^{qn}\int \int _{{\mathcal {F}}}\left( \left( \kappa _{1}\left( \dfrac{\partial \kappa _{3}}{\partial s}-\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{\partial \kappa _{1}}{\partial s}+\kappa _{2}\kappa _{3}\right) \right) \left( \dfrac{\partial }{\partial s}\left( \chi \right. \right. \right. \\{} & {} \left. \left. \left. -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e} \kappa _{2}\right) +\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s} \left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3} \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\frac{m}{e}\kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{ m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \kappa _{1}\left( \dfrac{ \partial \kappa _{3}}{\partial s} \right. \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. \left. -\kappa _{2}\kappa _{1}\right) +\kappa _{3}\left( \dfrac{\partial \kappa _{1}}{\partial s} +\kappa _{2}\kappa _{3}\right) \right) \kappa _{1}+\left( \kappa _{1}^{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}\kappa _{2}\right) d\sigma \right) \right. \\{} & {} \left. -\left( \dfrac{\partial }{\partial s}\kappa _{1}(1-\frac{m}{e})-\kappa _{1}\frac{m }{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \left( \kappa _{1}^{2} \mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}\right) d{\mathcal {F}}. \end{aligned}$$
Optical quasi model for ferromagnetic normal recursional electric \(\phi (\textbf{n}_{\textbf{q}})\) flexible elastic quasi normal \(\mathbb {Q} \textbf{n}_{\textbf{q}}-\)microscale beam with optical ring quasi resonator is illustrated in Fig. 2.

2.3 Recursional electromagnetical \(\phi (\textbf{b}_{\textbf{q}})\) microscale beam

Quasi normalize operator for flexible \(\phi (\textbf{b}_{\textbf{q}})\) is
$$\begin{aligned}{} & {} \mathcal {N}\nabla _{t}\phi \left( \textbf{b}_{\textbf{q}}\right) =\left( \int _{\alpha }\left( -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-}\kappa _{3}\varepsilon _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi +\dfrac{ \partial \kappa _{3}}{\partial t}\right) \kappa _{1}-\left( \chi \left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) \right. \right. \right. \\{} & {} \left. \left. \left. +\vartheta \kappa _{3}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q}-\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-}\kappa _{3}\varepsilon _{3} \mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi +\dfrac{\partial \kappa _{3}}{ \partial t}\right) \textbf{n}_{\textbf{q}}-\left( \chi \left( \dfrac{\partial \varepsilon _{3}}{ \partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) +\vartheta \kappa _{3}\right) \textbf{b}_{\textbf{q}}. \end{aligned}$$
Normalized electrical optimistic \(\phi (\textbf{b}_{\textbf{q}})\) density is
$$\begin{aligned}{} & {} ^{\mathcal {B}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }=\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi \right. \right. \right. \\{} & {} \left. \left. \left. -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( -\left( \left( \dfrac{ \partial \varepsilon _{2}}{\partial s}\mathbf {-}\kappa _{3}\varepsilon _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi +\dfrac{ \partial \kappa _{3}}{\partial t}\right) \kappa _{1}-\left( \chi \left( \dfrac{\partial \varepsilon _{3}}{\partial s} \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. +\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) +\vartheta \kappa _{3}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q}-\left( \left( \dfrac{\partial \varepsilon _{2}}{ \partial s}\mathbf {-}\kappa _{3}\varepsilon _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi +\dfrac{\partial \kappa _{3}}{\partial t}\right) \left( \dfrac{ \partial \kappa _{1}}{\partial s} \right. \\{} & {} \left. -\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) +\left( \chi \left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) +\vartheta \kappa _{3}\right) \left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{ \partial s}\chi -\kappa _{3}\kappa _{1}\right) . \end{aligned}$$
\(\divideontimes\) Quasi recursional ferromagnetic normal magnetical \(\phi (\textbf{b}_{\textbf{q}})\) flexible elastic quasi microscale beam is constructed
$$\begin{aligned}{} & {} ^{\mathcal {B}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }= {\mathcal {V}}_{b}^{qn}\int \int _{{\mathcal {F}}}\left( \left( \chi \left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) +\vartheta \kappa _{3}\right) \left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \right. \\{} & {} \left. +\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}-\dfrac{ \partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s} \right. \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. \left. \mathbf {-}\kappa _{3}\varepsilon _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi +\dfrac{\partial \kappa _{3}}{\partial t}\right) \kappa _{1}-\left( \chi \left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) +\vartheta \kappa _{3}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q}\right. \\{} & {} \left. -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-}\kappa _{3}\varepsilon _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi +\dfrac{ \partial \kappa _{3}}{\partial t}\right) \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \right) d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{b}^{qn}\) is recursional quasi normal magnetic \(\mathbb {Q}\textbf{n}_{\textbf{q}}-\)flexibility potential.
\(\divideontimes\) Quasi recursional ferromagnetic normal magnetical \(\phi (\textbf{b}_{\textbf{q}})\) flexible elastic quasi \(\mathbb {Q }\textbf{n}_{\textbf{q}}-\)microscale beam is defined
$$\begin{aligned} ^{\mathcal {B}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }^{*}={\mathcal {V}}_{b}^{qn}\int \int _{{\mathcal {F}}}\mathcal {R(B}){ \cdot {\mathcal N}(}\phi (\textbf{b}_{\textbf{q}})\times \nabla _{\textbf{t}_{\textbf{q} }}^{2}\phi (\textbf{b}_{\textbf{q}}))d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{b}^{qn}\) is recursional quasi normal magnetic flexibility potential.
Quasi normalized operator is
$$\begin{aligned}{} & {} \mathcal {N}\left. \left( \phi \left( \textbf{b}_{\textbf{q}}\right) \times \nabla _{\textbf{t}_{ \textbf{q}}}\phi \left( \textbf{b}_{\textbf{q}}\right) \right) =-\left( \int _{\alpha }\left( \chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}+\kappa _{3}\left( \dfrac{\partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \kappa _{2}\right) d\sigma \right) \textbf{t} _{q} \\{} & {} -\chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \textbf{n}_{\textbf{q} }+\left( \chi \left( \dfrac{\partial \kappa _{3}}{\partial s}+\chi \kappa _{1}\right) -\kappa _{3}\left( \dfrac{\partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \textbf{b}_{ \textbf{q}}. \end{aligned}$$
Since
$$\begin{aligned}{} & {} ^{\mathcal {B}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }^{*}=-\left( \int _{\alpha }\left( \chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}+\kappa _{3}\left( \dfrac{\partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \kappa _{2}\right) d\sigma )\left( \int _{\alpha }\left( \left( \dfrac{\partial }{ \partial s}\kappa _{1}-\chi \kappa _{3} \right. \right. \right. \\{} & {} \left. \left. \left. +\kappa _{3}\kappa _{2}\right) \kappa _{1}+\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) -\chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3} \right. \\{} & {} \left. +\kappa _{3}\kappa _{2}\right) -\left( \chi \left( \dfrac{\partial \kappa _{3}}{\partial s} +\chi \kappa _{1}\right) -\kappa _{3}\left( \dfrac{\partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \left( \kappa _{3}\kappa _{1}-\dfrac{\partial \chi }{\partial s} -\kappa _{3}\kappa _{1}\right) \end{aligned}$$
\(\divideontimes\) Quasi recursional ferromagnetic normal magnetical \(\phi (\textbf{b}_{\textbf{q}})\) flexible elastic quasi microscale beam is
$$\begin{aligned}{} & {} ^{\mathcal {B}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }^{*}={\mathcal {V}}_{b}^{qn}\int \int _{{\mathcal {F}}}\left( -\left( \chi \left( \dfrac{ \partial \kappa _{3}}{\partial s}+\chi \kappa _{1}\right) -\kappa _{3}\left( \dfrac{ \partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \left( \kappa _{3}\kappa _{1}- \dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \right. \\{} & {} \left. -\left( \int _{\alpha }\left( \chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}+\kappa _{3}\left( \dfrac{\partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s} \kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \kappa _{1}\right. \right. \\{} & {} \left. \left. \left. +\left( \kappa _{3}\kappa _{1}-\dfrac{\partial }{\partial s}\chi -\kappa _{3}\kappa _{1}\right) \kappa _{2}\right) d\sigma \right) -\chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \left( \dfrac{\partial }{\partial s}\kappa _{1}-\chi \kappa _{3}+\kappa _{3}\kappa _{2}\right) \right) d{\mathcal {F}}, \end{aligned}$$
\(\divideontimes\) Quasi recursional normal electrical \(\phi ( \textbf{b}_{\textbf{q}})\) quasi microscale beam is defined
$$\begin{aligned} ^{\mathcal {E}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }= {\mathcal {V}}_{\varepsilon }^{qn}\int \int _{{\mathcal {F}}}\mathcal {R(E)}{ \cdot {\mathcal N}}\nabla _{t}\phi \left( \textbf{b}_{\textbf{q}}\right) d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{\varepsilon }^{qn}\) is recursional quasi normal magnetic electric potential.
Quasi electric optimistic density is
$$\begin{aligned}{} & {} ^{\mathcal {E}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }=\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\left( \chi - \frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e} \kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1 \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{m}{e} \kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\mathbf {-}\kappa _{3}\varepsilon _{3} \mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi \right. \right. \right. \\{} & {} \left. \left. \left. +\dfrac{\partial \kappa _{3}}{\partial t}\right) \kappa _{1}-\left( \chi \left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) +\vartheta \kappa _{3}\right) \kappa _{2}\right) d\sigma \right) -\left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right. \\{} & {} \left. +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \left( \left( \dfrac{ \partial \varepsilon _{2}}{\partial s}\mathbf {-}\kappa _{3}\varepsilon _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi +\dfrac{ \partial \kappa _{3}}{\partial t}\right) +\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1 \right. \right. \\{} & {} \left. \left. -\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{m}{e} \kappa _{2}\right) \right) \left( \chi \left( \dfrac{\partial \varepsilon _{3}}{\partial s} +\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) +\vartheta \kappa _{3}\right) \end{aligned}$$
\(\divideontimes\) Quasi recursional normal electrical \(\phi ( \textbf{b}_{\textbf{q}})\) viscoelastic microscale beam is
$$\begin{aligned}{} & {} ^{\mathcal {E}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }= {\mathcal {V}}_{\varepsilon }^{qn}\int \int _{{\mathcal {F}}}\left( -\left( \dfrac{ \partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1- \frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s} \right. \right. \right. \\{} & {} \left. \left. \left. \mathbf {-}\kappa _{3}\varepsilon _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi +\dfrac{\partial \kappa _{3}}{\partial t}\right) +\left( \int _{\alpha }\left( \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}\right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\frac{m}{e}\kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{ m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( -\left( \left( \dfrac{\partial \varepsilon _{2}}{\partial s}\right. \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. \left. \mathbf {-}\kappa _{3}\varepsilon _{3}\mathbf {+}\kappa _{1}\varepsilon _{1}\right) \chi +\dfrac{\partial \kappa _{3}}{\partial t}\right) \kappa _{1}-\left( \chi \left( \dfrac{\partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) +\vartheta \kappa _{3}\right) \kappa _{2}\right) d\sigma \right) \textbf{t}_{q} \right. \\{} & {} \left. +\left( \dfrac{\partial }{\partial s}\kappa _{1}(1-\frac{m}{e})-\kappa _{1}\frac{m }{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \left( \chi \left( \dfrac{ \partial \varepsilon _{3}}{\partial s}+\varepsilon _{2}\kappa _{3}+\kappa _{2}\varepsilon _{1}\right) +\vartheta \kappa _{3}\right) \right) d{\mathcal {F}}, \end{aligned}$$
where \({\mathcal {V}}_{\varepsilon }^{qn}\) is recursional quasi normal magnetic electric potential.
Since
$$\begin{aligned}{} & {} ^{\mathcal {E}}\mathcal{N}\mathcal{D}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }^{*}=-\left( \int _{\alpha }\left( \chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}+\kappa _{3}\left( \dfrac{\partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \kappa _{2}\right) d\sigma )\left( \int _{\alpha }\left( \left( \dfrac{ \partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right. \right. \right. \\{} & {} \left. \left. \left. +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e }-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \\{} & {} -\chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{ e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \\{} & {} -\left( \chi \left( \dfrac{\partial \kappa _{3}}{\partial s}+\chi \kappa _{1}\right) -\kappa _{3}\left( \dfrac{\partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \left( \dfrac{ \partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) -\kappa _{1}\frac{m}{e} -\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) . \end{aligned}$$
\(\divideontimes\) Quasi recursional ferromagnetic normal electrical \(\phi (\textbf{b}_{\textbf{q}})\) quasi microscale beam is
$$\begin{aligned}{} & {} ^{\mathcal {E}}{\mathcal{R}}{\mathcal{M}}_{\phi \left( \textbf{b}_{\textbf{q}}\right) }^{*}={\mathcal {V}}_{\varepsilon }^{qn}\int \int _{{\mathcal {F}}}\left( -\left( \chi \left( \dfrac{\partial \kappa _{3}}{\partial s}+\chi \kappa _{1}\right) -\kappa _{3}\left( \dfrac{\partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{e}\right) \right. \right. \\{} & {} \left. \left. \left. -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) -\left( \int _{\alpha }\left( \chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \kappa _{1}+\kappa _{3}\left( \dfrac{\partial \chi }{\partial s}-\kappa _{3}\kappa _{1}\right) \right) \kappa _{2}\right) d\sigma \right) \left( \int _{\alpha }\left( \left( \dfrac{ \partial }{\partial s}\left( \chi \right. \right. \right. \right. \right. \\{} & {} \left. \left. \left. \left. -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{e}\right) \kappa _{3}-\frac{m}{e} \kappa _{2}\right) \kappa _{1}-\left( \dfrac{\partial }{\partial s}\kappa _{1}\left( 1-\frac{m}{ e}\right) -\kappa _{1}\frac{m}{e}-\kappa _{3}\left( \chi -\frac{m}{e}\kappa _{2}\right) \right) \kappa _{2}\right) d\sigma \right) \\{} & {} \left. -\chi \left( \chi \kappa _{2}\mathbf {+}\kappa _{3}^{2}\right) \left( \dfrac{\partial }{\partial s}\left( \chi -\frac{m}{e}\kappa _{2}\right) +\kappa _{1}\left( 1-\frac{m}{ e}\right) \kappa _{3}-\frac{m}{e}\kappa _{2}\right) \right) d{\mathcal {F}}. \end{aligned}$$
Optical quasi model for ferromagnetic normal recursional electric \(\phi (\textbf{b}_{\textbf{q}})\) flexible elastic quasi normal \(\mathbb {Q} \textbf{n}_{\textbf{q}}-\)microscale beam with optical ring quasi resonator is illustrated in Fig. 3.

3 Conclusion

The analysis of optical electromagnetic waves in hydrodynamics constructed a range of phenomena, including the refraction and dispersion of light in water, the effects of surface waves on optical wavefronts, and the impact of random variations in the medium on the coherence and polarization of optical signals with geometrical applications [53–63].
In our article, we establish optical ferromagnetic illustration for recursional electromagnetic flexible elastic microscale beams with quasi fields. We construct properties of quasi recursional normal electromagnetic flexible elastic quasi microscale beams in terms of quasi normalized operator. We give new characterizations for ferromagnetic electric normalized quasi optimistic density with quasi frame. Finally, we obtain optical application for recursional electrical flexible elastic quasi microscale beam with optical quasi resonator.

Declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
go back to reference Arefin, M.A., Khatun, M.A., Uddin, M.H., Inc, M.: Investigation of adequate closed form travelling wave solution to the space-time fractional nonlinear evolution equations. J. Ocean Eng. Sci. 7, 292–303 (2022) Arefin, M.A., Khatun, M.A., Uddin, M.H., Inc, M.: Investigation of adequate closed form travelling wave solution to the space-time fractional nonlinear evolution equations. J. Ocean Eng. Sci. 7, 292–303 (2022)
go back to reference Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47(6), 3108 (1993)ADS Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47(6), 3108 (1993)ADS
go back to reference Barros, M., Ferrández, A., Lucas, P., Merono, M.: Hopf cylinders, B-scrolls and solitons of the Betchov-Da Rios equation in the 3-dimensional anti-De Sitter space. CR Acad. Sci. Paris, Série I 321, 505–509 (1995) Barros, M., Ferrández, A., Lucas, P., Merono, M.: Hopf cylinders, B-scrolls and solitons of the Betchov-Da Rios equation in the 3-dimensional anti-De Sitter space. CR Acad. Sci. Paris, Série I 321, 505–509 (1995)
go back to reference Barros, M., Ferrández, A., Lucas, P., Meroño, M.A.: Solutions of the Betchov-Da Rios soliton equation: a Lorentzian approach. J. Geom. Phys. 31(2–3), 217–228 (1999)ADSMathSciNet Barros, M., Ferrández, A., Lucas, P., Meroño, M.A.: Solutions of the Betchov-Da Rios soliton equation: a Lorentzian approach. J. Geom. Phys. 31(2–3), 217–228 (1999)ADSMathSciNet
go back to reference Diaz, A.F., Felix-Navarro, R.M.: A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004) Diaz, A.F., Felix-Navarro, R.M.: A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004)
go back to reference Dong, K., et al.: 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29, 1702648 (2017) Dong, K., et al.: 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29, 1702648 (2017)
go back to reference Fassler, A., Majidi, C.: Liquid-phase metal inclusions for a conductive polymer composite. Adv. Mater. 27, 1928–1932 (2015)PubMed Fassler, A., Majidi, C.: Liquid-phase metal inclusions for a conductive polymer composite. Adv. Mater. 27, 1928–1932 (2015)PubMed
go back to reference Guo, B., Ding, S.: Landau-Lifshitz Equations. World Scientific, Singapore (2008) Guo, B., Ding, S.: Landau-Lifshitz Equations. World Scientific, Singapore (2008)
go back to reference Gürbüz, N.: The differantial formula of Hasimoto transformation in Minkowski 3-space. Int. J. Math. Math. Sci. 2005, 542381 (2005) Gürbüz, N.: The differantial formula of Hasimoto transformation in Minkowski 3-space. Int. J. Math. Math. Sci. 2005, 542381 (2005)
go back to reference He, X., et al.: A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Funct. Mater. 27, 1604378 (2017) He, X., et al.: A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Funct. Mater. 27, 1604378 (2017)
go back to reference Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)ADS Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)ADS
go back to reference Körpınar, Z., Körpınar, T.: Optical hybrid electric and magnetic B\(_{1}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)ADS Körpınar, Z., Körpınar, T.: Optical hybrid electric and magnetic B\(_{1}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)ADS
go back to reference Körpınar, Z., Körpınar, T.: Optical tangent hybrid electromotives for tangent hybrid magnetic particle. Optik 247, 167823 (2021)ADS Körpınar, Z., Körpınar, T.: Optical tangent hybrid electromotives for tangent hybrid magnetic particle. Optik 247, 167823 (2021)ADS
go back to reference Körpınar, T., Körpınar, Z.: New version of optical spherical electric and magnetic flow phasewith some fractional solutions in \(\mathbb{S} _{\mathbb{H} ^{3}}^{2}\). Optik 243, 167378 (2021)ADS Körpınar, T., Körpınar, Z.: New version of optical spherical electric and magnetic flow phasewith some fractional solutions in \(\mathbb{S} _{\mathbb{H} ^{3}}^{2}\). Optik 243, 167378 (2021)ADS
go back to reference Körpınar, T., Körpınar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021)ADS Körpınar, T., Körpınar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021)ADS
go back to reference Körpınar, Z., Körpınar, T.: Optical hybrid electric and magnetic B\(_{1}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)ADS Körpınar, Z., Körpınar, T.: Optical hybrid electric and magnetic B\(_{1}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)ADS
go back to reference Körpınar, Z., Körpınar, T.: Optical tangent hybrid electromotives for tangent hybrid magnetic particle. Optik 247, 167823 (2021)ADS Körpınar, Z., Körpınar, T.: Optical tangent hybrid electromotives for tangent hybrid magnetic particle. Optik 247, 167823 (2021)ADS
go back to reference Körpınar, T., Körpınar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021)ADS Körpınar, T., Körpınar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021)ADS
go back to reference Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020)ADS Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020)ADS
go back to reference Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Revista Mexicana de Física 66(4), 431–439 (2020)MathSciNet Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Revista Mexicana de Física 66(4), 431–439 (2020)MathSciNet
go back to reference Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Optik 217, 164561 (2020)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Optik 217, 164561 (2020)ADS
go back to reference Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \(\mathbb{S} _{Heis^{3}}^{2}\). Optik 247, 167937 (2021)ADS Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \(\mathbb{S} _{Heis^{3}}^{2}\). Optik 247, 167937 (2021)ADS
go back to reference Körpınar, T., Sazak, A., Körpınar, Z.: Optical effects of some motion equations on quasi-frame with compatible Hasimoto map. Optik 247, 167914 (2021)ADS Körpınar, T., Sazak, A., Körpınar, Z.: Optical effects of some motion equations on quasi-frame with compatible Hasimoto map. Optik 247, 167914 (2021)ADS
go back to reference Körpınar, T., Demirkol, R.C., Körpınar, Z.: Optical magnetic helicity with binormal electromagnetic vortex filament flows in MHD. Optik 247, 167823 (2021)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: Optical magnetic helicity with binormal electromagnetic vortex filament flows in MHD. Optik 247, 167823 (2021)ADS
go back to reference Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021)ADS
go back to reference Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021)ADS
go back to reference Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \(\mathbb{S} _{Heis^{3}}^{2}\). Optik 247, 167937 (2021)ADS Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \(\mathbb{S} _{Heis^{3}}^{2}\). Optik 247, 167937 (2021)ADS
go back to reference Körpınar, T., Sazak, A., Körpınar, Z.: Optical effects of some motion equations on quasi-frame with compatible Hasimoto map. Optik 247, 167914 (2021)ADS Körpınar, T., Sazak, A., Körpınar, Z.: Optical effects of some motion equations on quasi-frame with compatible Hasimoto map. Optik 247, 167914 (2021)ADS
go back to reference Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021)ADS
go back to reference Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021)ADS
go back to reference Körpınar, T., Körpınar, Z., Asil, V.: New approach for optical electroostimistic phase with optical quasi potential energy. Optik 251, 168291 (2022)ADS Körpınar, T., Körpınar, Z., Asil, V.: New approach for optical electroostimistic phase with optical quasi potential energy. Optik 251, 168291 (2022)ADS
go back to reference Li, X., et al.: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8, 10674–10681 (2014)PubMed Li, X., et al.: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8, 10674–10681 (2014)PubMed
go back to reference Lu, N., Kim, D.-H.: Flexible and stretchable electronics paving the way for soft robotics. Soft Rob. 1, 53–62 (2014) Lu, N., Kim, D.-H.: Flexible and stretchable electronics paving the way for soft robotics. Soft Rob. 1, 53–62 (2014)
go back to reference Luo, J., Wang, Z.L.: Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Mater. 23, 617–628 (2019) Luo, J., Wang, Z.L.: Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Mater. 23, 617–628 (2019)
go back to reference Parto-haghighi, M., Manafian, J.: Solving a class of boundary value problems and fractional Boussinesq-like equation with \(\beta\)- derivatives by fractional-order exponential trial functions. J. Ocean Eng. Sci. 5, 197–204 (2020) Parto-haghighi, M., Manafian, J.: Solving a class of boundary value problems and fractional Boussinesq-like equation with \(\beta\)- derivatives by fractional-order exponential trial functions. J. Ocean Eng. Sci. 5, 197–204 (2020)
go back to reference Qu, Y., et al.: Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, 1707251 (2018) Qu, Y., et al.: Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, 1707251 (2018)
go back to reference Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A 4(5), 938–944 (1992)ADSMathSciNet Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A 4(5), 938–944 (1992)ADSMathSciNet
go back to reference Ricca, R.L.: Inflexional disequilibrium of magnetic flux-tubes. Fluid Dyn. Res. 36(4–6), 319 (2005)ADSMathSciNet Ricca, R.L.: Inflexional disequilibrium of magnetic flux-tubes. Fluid Dyn. Res. 36(4–6), 319 (2005)ADSMathSciNet
go back to reference Ryu, J., et al.: Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability. Nano Energy 55, 348–353 (2018) Ryu, J., et al.: Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability. Nano Energy 55, 348–353 (2018)
go back to reference Sordo, F., et al.: Microstructured fibers for the production of food. Adv. Mater. 31, e1807282 (2019)PubMed Sordo, F., et al.: Microstructured fibers for the production of food. Adv. Mater. 31, e1807282 (2019)PubMed
go back to reference Sun, H., Zhang, Y., Zhang, J., Sun, X., Peng, H.: Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017)ADS Sun, H., Zhang, Y., Zhang, J., Sun, X., Peng, H.: Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017)ADS
go back to reference Vieira, V.R., Horley, P.P.: The Frenet-Serret representation of the Landau–Lifshitz–Gilbert equation. J. Phys. A: Math. Theor. 45(6), 065208 (2012)ADSMathSciNet Vieira, V.R., Horley, P.P.: The Frenet-Serret representation of the Landau–Lifshitz–Gilbert equation. J. Phys. A: Math. Theor. 45(6), 065208 (2012)ADSMathSciNet
go back to reference Vithya, A., Rajan, M.S.M.: Impact of fifth order dispersion on soliton solution for higher order NLS equation with variable coefficients. J. Ocean Eng. Sci. 5, 205–213 (2020) Vithya, A., Rajan, M.S.M.: Impact of fifth order dispersion on soliton solution for higher order NLS equation with variable coefficients. J. Ocean Eng. Sci. 5, 205–213 (2020)
go back to reference Wang, Z.L.: Triboelectric nanogenerators as new energy technology for selfpowered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013)PubMed Wang, Z.L.: Triboelectric nanogenerators as new energy technology for selfpowered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013)PubMed
go back to reference Wang, Z.L., Chen, J., Lin, L.: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015) Wang, Z.L., Chen, J., Lin, L.: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015)
go back to reference Yan, W., et al.: Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31, 1802348 (2019) Yan, W., et al.: Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31, 1802348 (2019)
go back to reference Yu, X., et al.: A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation. J. Mater. Chem. A 5, 6032–6037 (2017)ADS Yu, X., et al.: A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation. J. Mater. Chem. A 5, 6032–6037 (2017)ADS
go back to reference Zhang, T., et al.: High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41, 35–42 (2017) Zhang, T., et al.: High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41, 35–42 (2017)
go back to reference Zhong, J., et al.: Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8, 6273–6280 (2014)PubMed Zhong, J., et al.: Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8, 6273–6280 (2014)PubMed
go back to reference Zhu, S., et al.: Ultrastretchable fibers with metallic conductivity using a liquidmetal alloy core. Adv. Funct. Mater. 23, 2308–2314 (2013) Zhu, S., et al.: Ultrastretchable fibers with metallic conductivity using a liquidmetal alloy core. Adv. Funct. Mater. 23, 2308–2314 (2013)
Metadata
Title
New optical quantum hyperbolic recursional ferromagnetic microscale
Authors
Talat Körpinar
Zeliha Körpinar
Publication date
01-04-2024
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 4/2024
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05981-5

Other articles of this Issue 4/2024

Optical and Quantum Electronics 4/2024 Go to the issue