Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

Next Generation Neural Mass Models

Authors : Stephen Coombes, Áine Byrne

Published in: Nonlinear Dynamics in Computational Neuroscience

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Neural mass models have been actively used since the 1970s to model the coarse grained activity of large populations of neurons and synapses. They have proven especially useful in understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. In this chapter we consider the \(\theta \)-neuron model that has recently been shown to admit to an exact mean-field description for instantaneous pulsatile interactions. We show that the inclusion of a more realistic synapse model leads to a mean-field model that has many of the features of a neural mass model coupled to a further dynamical equation that describes the evolution of network synchrony. A bifurcation analysis is used to uncover the primary mechanism for generating oscillations at the single and two population level. Numerical simulations also show that the phenomena of event related synchronisation and desynchronisation are easily realised. Importantly unlike its phenomenological counterpart this next generation neural mass model is an exact macroscopic description of an underlying microscopic spiking neurodynamics, and is a natural candidate for use in future large scale human brain simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)CrossRef Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)CrossRef
2.
go back to reference Zetterberg, L.H., Kristiansson, L., Mossberg, K.: Performance of a model for a local neuron population. Biol. Cybern. 31, 15–26 (1978)CrossRef Zetterberg, L.H., Kristiansson, L., Mossberg, K.: Performance of a model for a local neuron population. Biol. Cybern. 31, 15–26 (1978)CrossRef
3.
go back to reference Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H.: Model of brain rhythmic activity: the alpha-rhythm of the thalamus. Kybernetik 15, 27–37 (1974)CrossRef Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H.: Model of brain rhythmic activity: the alpha-rhythm of the thalamus. Kybernetik 15, 27–37 (1974)CrossRef
4.
go back to reference Lopes da Silva, F.H., van Rotterdam, A., Barts, P., van Heusden, E., Burr, W.: Models of neuronal populations: the basic mechanisms of rhythmicity. Prog. Brain Res. 45, 281–308 (1976)CrossRef Lopes da Silva, F.H., van Rotterdam, A., Barts, P., van Heusden, E., Burr, W.: Models of neuronal populations: the basic mechanisms of rhythmicity. Prog. Brain Res. 45, 281–308 (1976)CrossRef
5.
go back to reference Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cyber. 73, 357–366 (1995)CrossRef Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cyber. 73, 357–366 (1995)CrossRef
6.
go back to reference Wendling, F., Benquet, P., Bartolomei, F., Jirsa, V.: Computational models of epileptiform activity. J. Neurosci. Methods 260, 233–251 (2016)CrossRef Wendling, F., Benquet, P., Bartolomei, F., Jirsa, V.: Computational models of epileptiform activity. J. Neurosci. Methods 260, 233–251 (2016)CrossRef
7.
go back to reference Dafilis, M.P., Frascoli, F., Cadusch, P.J., Liley, D.T.J.: Chaos and generalised multistability in a mesoscopic model of the electroencephalogram. Phys. D 238, 1056–1060 (2009)CrossRef Dafilis, M.P., Frascoli, F., Cadusch, P.J., Liley, D.T.J.: Chaos and generalised multistability in a mesoscopic model of the electroencephalogram. Phys. D 238, 1056–1060 (2009)CrossRef
8.
go back to reference Freeman, W.J.: Tutorial on neurobiology: from single neurons to brain chaos. Int. J. Bifurc. Chaos 2, 451–482 (1992)CrossRef Freeman, W.J.: Tutorial on neurobiology: from single neurons to brain chaos. Int. J. Bifurc. Chaos 2, 451–482 (1992)CrossRef
9.
go back to reference Sotero, R.C., Trujillo-Barreto, N.J., Iturria-Medina, Y., Carbonell, F., Jimenez, J.C.: Realistically coupled neural mass models can generate EEG rhythms. Neural Comput. 19, 478–512 (2007)MathSciNetCrossRef Sotero, R.C., Trujillo-Barreto, N.J., Iturria-Medina, Y., Carbonell, F., Jimenez, J.C.: Realistically coupled neural mass models can generate EEG rhythms. Neural Comput. 19, 478–512 (2007)MathSciNetCrossRef
10.
go back to reference Spiegler, A., Knösche, T.R., Schwab, K., Haueisen, J., Atay, F.M.: Modeling brain resonance phenomena using a neural mass model. PLoS Comput. Biol. 7(12), e1002298 (2011)CrossRef Spiegler, A., Knösche, T.R., Schwab, K., Haueisen, J., Atay, F.M.: Modeling brain resonance phenomena using a neural mass model. PLoS Comput. Biol. 7(12), e1002298 (2011)CrossRef
11.
go back to reference Deco, G., Jirsa, V.K., McIntosh, A.R.: Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Rev. Neurosci. 12, 43–56 (2011)CrossRef Deco, G., Jirsa, V.K., McIntosh, A.R.: Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Rev. Neurosci. 12, 43–56 (2011)CrossRef
12.
go back to reference Valdes-Sosa, P., Sanchez-Bornot, J.M., Sotero, R.C., Iturria-Medina, Y., Aleman-Gomez, Y., Bosch-Bayard, J., Carbonell, F., Ozaki, T.: Model driven EEG/fMRI fusion of brain oscillations. Hum. Brain Mapp. 30, 2701–2721 (2009)CrossRef Valdes-Sosa, P., Sanchez-Bornot, J.M., Sotero, R.C., Iturria-Medina, Y., Aleman-Gomez, Y., Bosch-Bayard, J., Carbonell, F., Ozaki, T.: Model driven EEG/fMRI fusion of brain oscillations. Hum. Brain Mapp. 30, 2701–2721 (2009)CrossRef
13.
go back to reference Moran, R., Pinotsis, D.A., Friston, K.: Neural masses and fields in dynamic causal modeling. Front. Comput. Neurosci. 7(57), 1–12 (2013) Moran, R., Pinotsis, D.A., Friston, K.: Neural masses and fields in dynamic causal modeling. Front. Comput. Neurosci. 7(57), 1–12 (2013)
14.
go back to reference Sanz-Leon, P., Knock, S.A., Spiegler, A., Jirsa, V.K.: Mathematical framework for large-scale brain network modeling in the virtual brain. NeuroImage 111, 385–430 (2015)CrossRef Sanz-Leon, P., Knock, S.A., Spiegler, A., Jirsa, V.K.: Mathematical framework for large-scale brain network modeling in the virtual brain. NeuroImage 111, 385–430 (2015)CrossRef
15.
go back to reference Bhattacharya, B.S., Chowdhury, F.N (eds.): Validating Neuro-Computational Models of Neurological and Psychiatric Disorders. Springer, Berlin (2015) Bhattacharya, B.S., Chowdhury, F.N (eds.): Validating Neuro-Computational Models of Neurological and Psychiatric Disorders. Springer, Berlin (2015)
16.
go back to reference Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophys. 110, 1842–1857 (1999)CrossRef Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophys. 110, 1842–1857 (1999)CrossRef
17.
go back to reference Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6(2), (2016) Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6(2), (2016)
18.
go back to reference Luke, T.B., Barreto, E., So, P.: Complete classification of the macroscopic behaviour of a heterogeneous network of theta neurons. Neural Comput. 25, 3207–3234 (2013)MathSciNetCrossRef Luke, T.B., Barreto, E., So, P.: Complete classification of the macroscopic behaviour of a heterogeneous network of theta neurons. Neural Comput. 25, 3207–3234 (2013)MathSciNetCrossRef
19.
go back to reference Montbrió, E., Pazó, D., Roxin, A.: Macroscopic description for networks of spiking neurons. Phys. Rev. X 5, 021028 (2015) Montbrió, E., Pazó, D., Roxin, A.: Macroscopic description for networks of spiking neurons. Phys. Rev. X 5, 021028 (2015)
20.
go back to reference Spiegler, A., Kiebel, S.J., Atay, F.M., Knösche, T.R.: Bifurcation analysis of neural mass models: impact of extrinsic inputs and dendritic time constants. NeuroImage 52, 1041–1058 (2010)CrossRef Spiegler, A., Kiebel, S.J., Atay, F.M., Knösche, T.R.: Bifurcation analysis of neural mass models: impact of extrinsic inputs and dendritic time constants. NeuroImage 52, 1041–1058 (2010)CrossRef
21.
go back to reference Touboul, J., Wendling, F., Chauvel, P., Faugeras, O.: Neural mass activity, bifurcations, and epilepsy. Neural Comput. 23, 3232–3286 (2011)MathSciNetCrossRef Touboul, J., Wendling, F., Chauvel, P., Faugeras, O.: Neural mass activity, bifurcations, and epilepsy. Neural Comput. 23, 3232–3286 (2011)MathSciNetCrossRef
22.
go back to reference Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233–253 (1986)MathSciNetCrossRef Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233–253 (1986)MathSciNetCrossRef
23.
go back to reference Latham, P.E., Richmond, B.J., Nelson, P.G., Nirenberg, S.: Intrinsic dynamics in neuronal networks I theory. J. Neurophysiol. 83, 808–827 (2000)CrossRef Latham, P.E., Richmond, B.J., Nelson, P.G., Nirenberg, S.: Intrinsic dynamics in neuronal networks I theory. J. Neurophysiol. 83, 808–827 (2000)CrossRef
24.
go back to reference Pazó, D., Montbrió, E.: Low-dimensional dynamics of populations of pulse-coupled oscillators. Phys. Rev. X 4, 011009 (2014) Pazó, D., Montbrió, E.: Low-dimensional dynamics of populations of pulse-coupled oscillators. Phys. Rev. X 4, 011009 (2014)
25.
go back to reference Kuramoto, Y.: Collective synchronization of pulse-coupled oscillators and excitable units. Phys. D 50, 15–30 (1991)CrossRef Kuramoto, Y.: Collective synchronization of pulse-coupled oscillators and excitable units. Phys. D 50, 15–30 (1991)CrossRef
26.
go back to reference Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008)MathSciNetCrossRef Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008)MathSciNetCrossRef
27.
go back to reference Laing, C.R : Phase oscillator network models of brain dynamics. In: Computational Models of Brain and Behavior. Wiley-Blackwell (2016) Laing, C.R : Phase oscillator network models of brain dynamics. In: Computational Models of Brain and Behavior. Wiley-Blackwell (2016)
28.
go back to reference Ermentrout, G.B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM Books, Philadelphia (2002)CrossRef Ermentrout, G.B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM Books, Philadelphia (2002)CrossRef
29.
go back to reference Börgers, C., Kopell, N.: Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 15, 509–538 (2003)CrossRef Börgers, C., Kopell, N.: Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 15, 509–538 (2003)CrossRef
30.
go back to reference Byrne, Á., Brookes, M.J., Coombes, S.: A mean field model for movement induced changes in the \(\beta \) rhythm. J. Comput. Neurosci. 43, 143–158 (2017) Byrne, Á., Brookes, M.J., Coombes, S.: A mean field model for movement induced changes in the \(\beta \) rhythm. J. Comput. Neurosci. 43, 143–158 (2017)
31.
go back to reference Bojak, I., Breakspear, M.: Neuroimaging, neural population models for. In: Encyclopedia of Computational Neuroscience, pp. 1–29. Springer, Berlin (2014) Bojak, I., Breakspear, M.: Neuroimaging, neural population models for. In: Encyclopedia of Computational Neuroscience, pp. 1–29. Springer, Berlin (2014)
32.
go back to reference Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.: Mean field description of and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2(10), (2012)MathSciNetCrossRef Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.: Mean field description of and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2(10), (2012)MathSciNetCrossRef
33.
go back to reference Coombes, S., beim Graben, P., Potthast, R., Wright, J.J. (eds). Neural Field Theory. Springer, Berlin (2014) Coombes, S., beim Graben, P., Potthast, R., Wright, J.J. (eds). Neural Field Theory. Springer, Berlin (2014)
34.
Metadata
Title
Next Generation Neural Mass Models
Authors
Stephen Coombes
Áine Byrne
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-71048-8_1

Premium Partner