Skip to main content
Top
Published in: Journal of Materials Science 14/2018

20-04-2018 | Energy materials

Nitrogen-doped carbon-coated V2O5 nanocomposite as cathode materials for lithium-ion battery

Authors: Liyun Cao, Lingjiang Kou, Jiayin Li, Jianfeng Huang, Jun Yang, Yong Wang

Published in: Journal of Materials Science | Issue 14/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

V2O5 has a high theoretical capacity of 440 mAh g−1 as cathode materials for lithium ion batteries. However, the poor conductivity may affect the lithiation/delithiation behavior greatly. This study effectively solves the poor conductivity and lithium ion migration rate of V2O5. Nitrogen-doped carbon-coated V2O5 composites (NCNPs-V2O5) are synthesized via an organic solvent assisted in situ hydrothermal growth method. Owing to the NCNPs and their novel 3D flower structure, the as-prepared NCNPs-V2O5 exhibited remarkable electrochemical performance as cathode material of lithium ion battery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li Y et al (2013) Leaf-like V2O5 nanosheets fabricated by a Facile Green approach as high energy cathode material for lithium-ion batteries. Adv Energy Mater 3(9):1171–1175CrossRef Li Y et al (2013) Leaf-like V2O5 nanosheets fabricated by a Facile Green approach as high energy cathode material for lithium-ion batteries. Adv Energy Mater 3(9):1171–1175CrossRef
2.
go back to reference Chao D et al (2014) A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv Mater 26(33):5794–5800CrossRef Chao D et al (2014) A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv Mater 26(33):5794–5800CrossRef
3.
go back to reference Brown E et al (2016) Highly stable three lithium insertion in thin V2O5 shells on vertically aligned carbon nanofiber arrays for ultrahigh-capacity lithium ion battery cathodes. Adv Mater Interfaces 3(23):1600824CrossRef Brown E et al (2016) Highly stable three lithium insertion in thin V2O5 shells on vertically aligned carbon nanofiber arrays for ultrahigh-capacity lithium ion battery cathodes. Adv Mater Interfaces 3(23):1600824CrossRef
4.
go back to reference Pan A et al (2010) Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 20(41):9193CrossRef Pan A et al (2010) Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 20(41):9193CrossRef
5.
go back to reference Liu J et al (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131:12086CrossRef Liu J et al (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131:12086CrossRef
6.
go back to reference Cheah YL, Aravindan V, Madhavi S (2012) Electrochemical lithium insertion behavior of combustion synthesized V2O5 cathodes for lithium-ion batteries. J Electrochem Soc 159(3):A273–A280CrossRef Cheah YL, Aravindan V, Madhavi S (2012) Electrochemical lithium insertion behavior of combustion synthesized V2O5 cathodes for lithium-ion batteries. J Electrochem Soc 159(3):A273–A280CrossRef
7.
go back to reference Liu J et al (2011) Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries. Chem Commun 47(37):10380–10382CrossRef Liu J et al (2011) Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries. Chem Commun 47(37):10380–10382CrossRef
8.
go back to reference Su D et al (2017) Enhanced composites of V2O5 nanowires decorating on graphene layers as ideal cathode materials for lithium-ion batteries. J Alloy Compd 695:2974–2980CrossRef Su D et al (2017) Enhanced composites of V2O5 nanowires decorating on graphene layers as ideal cathode materials for lithium-ion batteries. J Alloy Compd 695:2974–2980CrossRef
9.
go back to reference Zeng L et al (2016) Novel synthesis of V2O5 hollow microspheres for lithium ion batteries. Sci China Mater 59(7):567–573CrossRef Zeng L et al (2016) Novel synthesis of V2O5 hollow microspheres for lithium ion batteries. Sci China Mater 59(7):567–573CrossRef
10.
go back to reference Prześniak-Welenc M et al (2016) The influence of nanostructure size on V2O5 electrochemical properties as cathode materials for lithium ion batteries. RSC Adv 6(61):55689–55697CrossRef Prześniak-Welenc M et al (2016) The influence of nanostructure size on V2O5 electrochemical properties as cathode materials for lithium ion batteries. RSC Adv 6(61):55689–55697CrossRef
11.
go back to reference Zhou X et al (2017) A scalable strategy to synthesize TiO2–V2O5 nanorods as high performance cathode for lithium ion batteries from VOx quasi-aerogel and tetrabutyl titanate. Ceram Int 43(15):12689–12697CrossRef Zhou X et al (2017) A scalable strategy to synthesize TiO2–V2O5 nanorods as high performance cathode for lithium ion batteries from VOx quasi-aerogel and tetrabutyl titanate. Ceram Int 43(15):12689–12697CrossRef
12.
go back to reference Zhang Y et al (2016) Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Appl Surf Sci 377:385–393CrossRef Zhang Y et al (2016) Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Appl Surf Sci 377:385–393CrossRef
13.
go back to reference Wang H-G et al (2012) Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chemistry 18(29):8987–8993CrossRef Wang H-G et al (2012) Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chemistry 18(29):8987–8993CrossRef
14.
go back to reference Fang D et al (2014) Self-assembled hairy ball-like V2O5 nanostructures for lithium ion batteries. RSC Adv 4(48):25205CrossRef Fang D et al (2014) Self-assembled hairy ball-like V2O5 nanostructures for lithium ion batteries. RSC Adv 4(48):25205CrossRef
15.
go back to reference Yu H, Yang J, Fan H (2017) Controllable synthesis of various V2O5 micro-/nanostructures as high performance cathodes for lithium ion batteries. CrystEngComm 19(4):716–721CrossRef Yu H, Yang J, Fan H (2017) Controllable synthesis of various V2O5 micro-/nanostructures as high performance cathodes for lithium ion batteries. CrystEngComm 19(4):716–721CrossRef
16.
go back to reference Li Z et al (2016) Enhanced electrochemical properties of Sn-doped V2O5 as a cathode material for lithium ion batteries. Electrochim Acta 222:1831–1838CrossRef Li Z et al (2016) Enhanced electrochemical properties of Sn-doped V2O5 as a cathode material for lithium ion batteries. Electrochim Acta 222:1831–1838CrossRef
17.
go back to reference Xu Y et al (2014) Two-dimensional V2O5 sheet network as electrode for lithium-ion batteries. ACS Appl Mater Interfaces 6(22):20408CrossRef Xu Y et al (2014) Two-dimensional V2O5 sheet network as electrode for lithium-ion batteries. ACS Appl Mater Interfaces 6(22):20408CrossRef
18.
go back to reference Shin J et al (2014) Carbon-coated V2O5 nanoparticles with enhanced electrochemical performance as a cathode material for lithium ion batteries. J Alloy Compd 589:322–329CrossRef Shin J et al (2014) Carbon-coated V2O5 nanoparticles with enhanced electrochemical performance as a cathode material for lithium ion batteries. J Alloy Compd 589:322–329CrossRef
19.
go back to reference Zou M et al (2016) Electric Cu nanoparticles decorated V2O5 spheres as high performance cathodes for lithium ion batteries. J Alloy Compd 681:268–274CrossRef Zou M et al (2016) Electric Cu nanoparticles decorated V2O5 spheres as high performance cathodes for lithium ion batteries. J Alloy Compd 681:268–274CrossRef
20.
go back to reference Wei Y et al (2015) Improved stability of electrochromic devices using Ti-doped V2O5 film. Electrochim Acta 166:277–284CrossRef Wei Y et al (2015) Improved stability of electrochromic devices using Ti-doped V2O5 film. Electrochim Acta 166:277–284CrossRef
21.
go back to reference Westphal TM et al (2017) Influence of the Nb2O5 doping on the electrochemical properties of V2O5 thin films. J Electroanal Chem 790:50CrossRef Westphal TM et al (2017) Influence of the Nb2O5 doping on the electrochemical properties of V2O5 thin films. J Electroanal Chem 790:50CrossRef
22.
go back to reference Vernardou D et al (2016) Capacitive behavior of Ag doped V2O5 grown by aerosol assisted chemical vapour deposition. Electrochim Acta 196:294–299CrossRef Vernardou D et al (2016) Capacitive behavior of Ag doped V2O5 grown by aerosol assisted chemical vapour deposition. Electrochim Acta 196:294–299CrossRef
23.
go back to reference Hu YS et al (2009) Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew Chem Int Ed Engl 48(1):210–214CrossRef Hu YS et al (2009) Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew Chem Int Ed Engl 48(1):210–214CrossRef
24.
go back to reference Sathiya M et al (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133(40):16291–16299CrossRef Sathiya M et al (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133(40):16291–16299CrossRef
25.
go back to reference Gu X et al (2015) Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. J Mater Chem A 3(3):1037–1041CrossRef Gu X et al (2015) Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. J Mater Chem A 3(3):1037–1041CrossRef
26.
go back to reference Jeong J-M et al (2015) Ultrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries. Nanoscale 7(1):324–329CrossRef Jeong J-M et al (2015) Ultrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries. Nanoscale 7(1):324–329CrossRef
27.
go back to reference Chang X et al (2017) Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res 10:1950CrossRef Chang X et al (2017) Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res 10:1950CrossRef
28.
go back to reference He Z et al (2016) Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries. Electrochim Acta 222:1491–1500CrossRef He Z et al (2016) Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries. Electrochim Acta 222:1491–1500CrossRef
29.
go back to reference Li L et al (2016) SnO2@N-doped carbon hollow nanoclusters for advanced lithium-ion battery anodes. Eur J Inorg Chem 2016(6):812–817CrossRef Li L et al (2016) SnO2@N-doped carbon hollow nanoclusters for advanced lithium-ion battery anodes. Eur J Inorg Chem 2016(6):812–817CrossRef
30.
go back to reference Zhang H et al (2013) Surface structure and high-rate performance of spinel Li4Ti5O12 coated with N-doped carbon as anode material for lithium-ion batteries. J Power Sources 239:538–545CrossRef Zhang H et al (2013) Surface structure and high-rate performance of spinel Li4Ti5O12 coated with N-doped carbon as anode material for lithium-ion batteries. J Power Sources 239:538–545CrossRef
31.
go back to reference Wang F et al (2015) Nitrogen-doped carbon nanofiber decorated LiFePO4 composites with superior performance for lithium-ion batteries. Ionics 22(3):333–340CrossRef Wang F et al (2015) Nitrogen-doped carbon nanofiber decorated LiFePO4 composites with superior performance for lithium-ion batteries. Ionics 22(3):333–340CrossRef
32.
go back to reference Wang X et al (2018) Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries. Chem Eng J 334:1642–1649CrossRef Wang X et al (2018) Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries. Chem Eng J 334:1642–1649CrossRef
33.
go back to reference Jiang B et al (2015) Thin carbon layer coated Ti3+-TiO2 nanocrystallites for visible-light driven photocatalysis. Nanoscale 7(11):5035–5045CrossRef Jiang B et al (2015) Thin carbon layer coated Ti3+-TiO2 nanocrystallites for visible-light driven photocatalysis. Nanoscale 7(11):5035–5045CrossRef
34.
go back to reference Zhao C et al (2016) Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water. Nano Res 9(3):866–875CrossRef Zhao C et al (2016) Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water. Nano Res 9(3):866–875CrossRef
35.
go back to reference Terzyk AP, Rychlicki G (2000) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro. Colloids Surf A 163:135–150CrossRef Terzyk AP, Rychlicki G (2000) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro. Colloids Surf A 163:135–150CrossRef
36.
go back to reference Liu N et al (2012) A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett 12(6):3315CrossRef Liu N et al (2012) A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett 12(6):3315CrossRef
37.
go back to reference Ergang NS et al (2006) Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system. Adv Mater 18(13):1750–1753CrossRef Ergang NS et al (2006) Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system. Adv Mater 18(13):1750–1753CrossRef
38.
go back to reference Odani A et al (2006) Testing carbon-coated VOx prepared via reaction under autogenic pressure at elevated temperature as li-insertion materials. Adv Mater 18(11):1431–1436CrossRef Odani A et al (2006) Testing carbon-coated VOx prepared via reaction under autogenic pressure at elevated temperature as li-insertion materials. Adv Mater 18(11):1431–1436CrossRef
39.
go back to reference Zhang C et al (2016) Template-free synthesis of highly porous V2O5 cuboids with enhanced performance for lithium ion batteries. Nanotechnology 27(30):305404CrossRef Zhang C et al (2016) Template-free synthesis of highly porous V2O5 cuboids with enhanced performance for lithium ion batteries. Nanotechnology 27(30):305404CrossRef
Metadata
Title
Nitrogen-doped carbon-coated V2O5 nanocomposite as cathode materials for lithium-ion battery
Authors
Liyun Cao
Lingjiang Kou
Jiayin Li
Jianfeng Huang
Jun Yang
Yong Wang
Publication date
20-04-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 14/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2238-z

Other articles of this Issue 14/2018

Journal of Materials Science 14/2018 Go to the issue

Premium Partners