Skip to main content
Top
Published in: Mathematics and Financial Economics 4/2015

01-10-2015

Non-concave utility maximisation on the positive real axis in discrete time

Authors: Laurence Carassus, Miklós Rásonyi, Andrea M. Rodrigues

Published in: Mathematics and Financial Economics | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We treat a discrete-time asset allocation problem in an arbitrage-free, generically incomplete financial market, where the investor has a possibly non-concave utility function and wealth is restricted to remain non-negative. Under easily verifiable conditions, we establish the existence of optimal portfolios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Here \(x^{+}\triangleq \max \left\{ x,0\right\} \) and \(x^{-}\triangleq -\min \left\{ x,0\right\} \) for every \(x\in \mathbb {R}\). Furthermore, in order to make the notation less heavy, given any function \(f:~X\rightarrow \mathbb {R}\), we shall write henceforth \(f^{\pm }\left( x\right) \triangleq \left[ f\left( x\right) \right] ^{\pm }\) for all \(x\in X\).
 
2
To be precise, in the cited lemma there is strict inequality in (2.5) and it is required to hold for \(\lambda >1\) only. As easily seen, it works also for our version.
 
3
Given a set \(E\subseteq X\times Y\), we recall that the projection of \(E\) on \(X\) is
$$\begin{aligned} {\text {Proj}}_{X}\!\left( E\right) \triangleq \left\{ x\in X\text {: }\exists \,y\in Y\text { such that }\left( x,y\right) \in E\right\} . \end{aligned}$$
 
Literature
1.
go back to reference Berkelaar, A.B., Kouwenberg, R., Post, T.: Optimal portfolio choice under loss aversion. Rev. Econ. Stat. 86(4), 973–987 (2004)CrossRef Berkelaar, A.B., Kouwenberg, R., Post, T.: Optimal portfolio choice under loss aversion. Rev. Econ. Stat. 86(4), 973–987 (2004)CrossRef
2.
3.
go back to reference Campi, L., Del Vigna, M.: Weak insider trading and behavioural finance. SIAM J. Financ. Math. 3(1), 242–279 (2012)CrossRefMATH Campi, L., Del Vigna, M.: Weak insider trading and behavioural finance. SIAM J. Financ. Math. 3(1), 242–279 (2012)CrossRefMATH
4.
go back to reference Carassus, L., Pham, H.: Portfolio optimization for nonconvex criteria functions. RIMS Kôkyuroku series, ed. Shigeyoshi Ogawa, 1620, pp. 81–111 (2009) Carassus, L., Pham, H.: Portfolio optimization for nonconvex criteria functions. RIMS Kôkyuroku series, ed. Shigeyoshi Ogawa, 1620, pp. 81–111 (2009)
6.
go back to reference Carassus, L., Rásonyi, M.: On optimal investment for a behavioral investor in multiperiod incomplete market models. Math. Finance 25(1), 115–153 (2015)CrossRefMathSciNet Carassus, L., Rásonyi, M.: On optimal investment for a behavioral investor in multiperiod incomplete market models. Math. Finance 25(1), 115–153 (2015)CrossRefMathSciNet
7.
go back to reference Carlier, G., Dana, R.-A.: Optimal demand for contingent claims when agents have law invariant utilities. Math. Finance 21(2), 169–201 (2011)MathSciNetMATH Carlier, G., Dana, R.-A.: Optimal demand for contingent claims when agents have law invariant utilities. Math. Finance 21(2), 169–201 (2011)MathSciNetMATH
8.
go back to reference Cvitanić, J., Karatzas, I.: Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Finance 6(2), 133–165 (1996)CrossRefMathSciNetMATH Cvitanić, J., Karatzas, I.: Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Finance 6(2), 133–165 (1996)CrossRefMathSciNetMATH
9.
go back to reference He, X.D., Zhou, X.Y.: Portfolio choice under cumulative prospect theory: an analytical treatment. Manag. Sci. 57(2), 315–331 (2011)CrossRefMATH He, X.D., Zhou, X.Y.: Portfolio choice under cumulative prospect theory: an analytical treatment. Manag. Sci. 57(2), 315–331 (2011)CrossRefMATH
10.
go back to reference Jacod, J., Shiryaev, A.N.: Local martingales and the fundamental asset pricing theorems in the discrete-time case. Finance Stoch. 2(3), 259–273 (1998)CrossRefMathSciNetMATH Jacod, J., Shiryaev, A.N.: Local martingales and the fundamental asset pricing theorems in the discrete-time case. Finance Stoch. 2(3), 259–273 (1998)CrossRefMathSciNetMATH
12.
go back to reference Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29(3), 702–730 (1991)CrossRefMathSciNetMATH Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29(3), 702–730 (1991)CrossRefMathSciNetMATH
13.
go back to reference Kabanov, Y., Stricker, C.: A teacher’s note on no-arbitrage criteria. In: Azéma, J., Émery, M., Ledoux, M., Yor, M. (eds.), Séminaire de Probabilités XXXV, Lecture Notes in Mathematics 1755, pp. 149–152. Springer, New York (2001) Kabanov, Y., Stricker, C.: A teacher’s note on no-arbitrage criteria. In: Azéma, J., Émery, M., Ledoux, M., Yor, M. (eds.), Séminaire de Probabilités XXXV, Lecture Notes in Mathematics 1755, pp. 149–152. Springer, New York (2001)
14.
go back to reference Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–292 (1979)CrossRefMATH Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–292 (1979)CrossRefMATH
15.
go back to reference Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999)CrossRefMathSciNetMATH Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999)CrossRefMathSciNetMATH
16.
go back to reference Rásonyi, M., Rodrigues, A.M.: Optimal portfolio choice for a behavioural investor in continuous-time markets. Ann. Finance 9(2), 291–318 (2013)CrossRefMathSciNet Rásonyi, M., Rodrigues, A.M.: Optimal portfolio choice for a behavioural investor in continuous-time markets. Ann. Finance 9(2), 291–318 (2013)CrossRefMathSciNet
17.
go back to reference Rásonyi, M., Rodríguez-Villarreal, J.G.: Optimal investment under behavioural criteria – a dual approach. In: Palczewski, A., Stettner, L. (eds.) Advances in Mathematics of Finance, vol. 104, pp. 167–180. Banach Center Publications (2015) Rásonyi, M., Rodríguez-Villarreal, J.G.: Optimal investment under behavioural criteria – a dual approach. In: Palczewski, A., Stettner, L. (eds.) Advances in Mathematics of Finance, vol. 104, pp. 167–180. Banach Center Publications (2015)
18.
go back to reference Rásonyi, M., Stettner, Ł.: On utility maximization in discrete-time financial market models. Ann. Appl. Probab. 15(2), 1367–1395 (2005)CrossRefMathSciNetMATH Rásonyi, M., Stettner, Ł.: On utility maximization in discrete-time financial market models. Ann. Appl. Probab. 15(2), 1367–1395 (2005)CrossRefMathSciNetMATH
19.
go back to reference Rásonyi, M., Stettner, Ł.: On the existence of optimal portfolios for the utility maximization problem in discrete time financial market models. In: Kabanov, Y., Liptser, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance. Springer, New York (2006) Rásonyi, M., Stettner, Ł.: On the existence of optimal portfolios for the utility maximization problem in discrete time financial market models. In: Kabanov, Y., Liptser, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance. Springer, New York (2006)
20.
go back to reference Reichlin, C.: Utility maximization with a given pricing measure when the utility is not necessarily concave. Math. Finance Econ. 7(4), 531–556 (2013)CrossRefMathSciNetMATH Reichlin, C.: Utility maximization with a given pricing measure when the utility is not necessarily concave. Math. Finance Econ. 7(4), 531–556 (2013)CrossRefMathSciNetMATH
21.
go back to reference Reichlin, C.: Non-concave utility maximization: optimal investment, stability and applications. PhD thesis, ETH Zürich (2012) Reichlin, C.: Non-concave utility maximization: optimal investment, stability and applications. PhD thesis, ETH Zürich (2012)
23.
go back to reference Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5(4), 297–323 (1992)CrossRefMATH Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5(4), 297–323 (1992)CrossRefMATH
24.
go back to reference von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)MATH von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)MATH
Metadata
Title
Non-concave utility maximisation on the positive real axis in discrete time
Authors
Laurence Carassus
Miklós Rásonyi
Andrea M. Rodrigues
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Mathematics and Financial Economics / Issue 4/2015
Print ISSN: 1862-9679
Electronic ISSN: 1862-9660
DOI
https://doi.org/10.1007/s11579-015-0146-4