Skip to main content
Top
Published in: Journal of Materials Science 4/2018

11-10-2017 | Metals

Non-isothermal precipitation kinetics and its effect on hot working behaviors of an Al–Zn–Mg–Cu alloy

Authors: Fulin Jiang, Hui Zhang

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The precipitation kinetics and its effect on hot working behavior of an Al–Zn–Mg–Cu alloy were studied under non-isothermal conditions and over a wide range of temperatures. The characterization techniques employed included in situ electrical resistivity measurements, differential scanning calorimetry, hardness testing and microstructure examination by scanning and transmission electron microscopy. The results showed that the precipitation kinetics during non-isothermal treatments were highly dependent on the thermal paths. Slow cooling processes led to coarse and sparse particle distribution. When heating to high temperatures, very fine precipitates with high density and homogeneous distribution were present at low temperature. Such fine precipitates showed unstable characters and dissolved quickly at higher temperature. Quantification of precipitate evolution during non-isothermal processing was obtained from in situ electrical resistivity measurements. The effects of heating paths on dynamic and static flow behaviors were also demonstrated to be significant. The degree of initial supersaturation controlled the nucleation rates and led to strong effect on dynamic and static precipitation, and on the flow stress softening.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Williams JC, Starke EA (2003) Progress in structural materials for aerospace systems. Acta Mater 51:5775–5799CrossRef Williams JC, Starke EA (2003) Progress in structural materials for aerospace systems. Acta Mater 51:5775–5799CrossRef
2.
go back to reference Rometsch PA, Zhang Y, Knight S (2014) Heat treatment of 7xxx series aluminium alloys-Some recent developments. Trans Nonferrous Metals Soc China 24:2003–2017CrossRef Rometsch PA, Zhang Y, Knight S (2014) Heat treatment of 7xxx series aluminium alloys-Some recent developments. Trans Nonferrous Metals Soc China 24:2003–2017CrossRef
3.
go back to reference Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B (2010) Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Mater 58:248–260CrossRef Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B (2010) Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Mater 58:248–260CrossRef
4.
go back to reference Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B (2010) Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater 58:4814–4826CrossRef Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B (2010) Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater 58:4814–4826CrossRef
5.
go back to reference Cerri E, Evangelista E, Forcellese A, McQueen HJ (1995) Comparative hot workability of 7012 and 7075 alloys after different pretreatments. Mater Sci Eng A 197(2):181–198CrossRef Cerri E, Evangelista E, Forcellese A, McQueen HJ (1995) Comparative hot workability of 7012 and 7075 alloys after different pretreatments. Mater Sci Eng A 197(2):181–198CrossRef
6.
go back to reference Liu S, You J, Zhang X, Deng Y, Yuan Y (2010) Influence of cooling rate after homogenization on the flow behavior of aluminum alloy 7050 under hot compression. Mater Sci Eng A 527(4):1200–1205CrossRef Liu S, You J, Zhang X, Deng Y, Yuan Y (2010) Influence of cooling rate after homogenization on the flow behavior of aluminum alloy 7050 under hot compression. Mater Sci Eng A 527(4):1200–1205CrossRef
7.
go back to reference Jiang F, Zhang H, Li L, Chen J (2012) The kinetics of dynamic and static softening during multistage hot deformation of 7150 aluminum alloy. Mater Sci Eng A 552:269–275CrossRef Jiang F, Zhang H, Li L, Chen J (2012) The kinetics of dynamic and static softening during multistage hot deformation of 7150 aluminum alloy. Mater Sci Eng A 552:269–275CrossRef
8.
go back to reference Jiang F, Zurob HS, Purdy GR, Zhang H (2015) Static softening following multistage hot deformation of 7150 aluminum alloy: experiment and modeling. Mater Sci Eng A 648:164–177CrossRef Jiang F, Zurob HS, Purdy GR, Zhang H (2015) Static softening following multistage hot deformation of 7150 aluminum alloy: experiment and modeling. Mater Sci Eng A 648:164–177CrossRef
9.
go back to reference Niewczas M, Basinski ZS, Basinski SJ, Embury JD (2001) Deformation of copper single crystals to large strains at 4.2 K: I. Mechanical response and electrical resistivity. Philos Mag 81(A):1121–1138CrossRef Niewczas M, Basinski ZS, Basinski SJ, Embury JD (2001) Deformation of copper single crystals to large strains at 4.2 K: I. Mechanical response and electrical resistivity. Philos Mag 81(A):1121–1138CrossRef
10.
go back to reference Aji DPB (2010) Structural relaxation, crystallization kinetics and diffusion study of metallic glasses. In: Ph.D. thesis, McMaster University, Hamilton, pp 132–138 Aji DPB (2010) Structural relaxation, crystallization kinetics and diffusion study of metallic glasses. In: Ph.D. thesis, McMaster University, Hamilton, pp 132–138
11.
go back to reference Jiang F, Zurob HS, Purdy GR, Zhang H (2015) In situ characterization of precipitate formation and dissolution in an Al–Zn–Mg–Cu alloy by electrical resistivity measurement. In: Militzer M, Botton G, Chen LQ, Howe J, Sinclair C and Zurob H (eds) Proceedings of the international conference on solid–solid phase transformations in inorganic materials, Whistler, Canada, pp 727–734 Jiang F, Zurob HS, Purdy GR, Zhang H (2015) In situ characterization of precipitate formation and dissolution in an Al–Zn–Mg–Cu alloy by electrical resistivity measurement. In: Militzer M, Botton G, Chen LQ, Howe J, Sinclair C and Zurob H (eds) Proceedings of the international conference on solid–solid phase transformations in inorganic materials, Whistler, Canada, pp 727–734
12.
go back to reference Jiang F, Zurob HS, Purdy GR, Zhang H (2016) Characterizing precipitate evolution of an Al–Zn–Mg–Cu–based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring. Mater Charact 117:47–56CrossRef Jiang F, Zurob HS, Purdy GR, Zhang H (2016) Characterizing precipitate evolution of an Al–Zn–Mg–Cu–based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring. Mater Charact 117:47–56CrossRef
13.
go back to reference Starink MJ (2004) Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev 49(344):191–226CrossRef Starink MJ (2004) Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev 49(344):191–226CrossRef
14.
go back to reference Lang P, Wojcik T, Povoden-Karadeniz E, Falahati A, Kozeschnik E (2014) Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis. J Alloys Compd 609:129–136CrossRef Lang P, Wojcik T, Povoden-Karadeniz E, Falahati A, Kozeschnik E (2014) Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis. J Alloys Compd 609:129–136CrossRef
15.
go back to reference Godard D, Archambault P, Aeby-Gautier E, Lapasset G (2002) Precipitation sequences during quenching of the AA 7010 alloy. Acta Mater 50:2319–2329CrossRef Godard D, Archambault P, Aeby-Gautier E, Lapasset G (2002) Precipitation sequences during quenching of the AA 7010 alloy. Acta Mater 50:2319–2329CrossRef
16.
go back to reference Embury JD, Nicholso RB (1965) The nucleation of precipitates: the system Al–Zn–Mg. Acta Metall 13:403–417CrossRef Embury JD, Nicholso RB (1965) The nucleation of precipitates: the system Al–Zn–Mg. Acta Metall 13:403–417CrossRef
18.
go back to reference Xu DK, Rometsch PA, Birbilis N (2012) Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part I Characterisation of constituent particles and overheating. Mater Sci Eng A 534:234–243CrossRef Xu DK, Rometsch PA, Birbilis N (2012) Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part I Characterisation of constituent particles and overheating. Mater Sci Eng A 534:234–243CrossRef
19.
go back to reference Dellah M, Bournane M, Ragab KA, Sadaoui Y, Sirenko AF (2013) Early decomposition of supersaturated solid solutions of Al–Zn–Mg casting alloys. Mater Des 50:606–612CrossRef Dellah M, Bournane M, Ragab KA, Sadaoui Y, Sirenko AF (2013) Early decomposition of supersaturated solid solutions of Al–Zn–Mg casting alloys. Mater Des 50:606–612CrossRef
20.
go back to reference Chobaut N, Carron D, Drezet JM (2016) Characterisation of precipitation upon cooling of an AA2618 Al–Cu–Mg alloy. J Alloys Compd 654:56–62CrossRef Chobaut N, Carron D, Drezet JM (2016) Characterisation of precipitation upon cooling of an AA2618 Al–Cu–Mg alloy. J Alloys Compd 654:56–62CrossRef
21.
go back to reference Guyot P, Cottignies L (1996) Precipitation kinetics, mechanical strength and electrical conductivity of Al–Zn–Mg–Cu alloys. Acta Mater 44(10):4161–4167CrossRef Guyot P, Cottignies L (1996) Precipitation kinetics, mechanical strength and electrical conductivity of Al–Zn–Mg–Cu alloys. Acta Mater 44(10):4161–4167CrossRef
22.
go back to reference Matsumoto K, Komatsu S, Ikeda M, Verlinden B, Raatchev P (2000) Quantification of volume fraction of precipitates in an aged Al-1.0 mass% Mg 2Si alloy. Mater Trans JIM 41(10):1275–1281CrossRef Matsumoto K, Komatsu S, Ikeda M, Verlinden B, Raatchev P (2000) Quantification of volume fraction of precipitates in an aged Al-1.0 mass% Mg 2Si alloy. Mater Trans JIM 41(10):1275–1281CrossRef
23.
go back to reference Komatsu S, Fujikawa S (1997) Electrical resistivity of light metals and alloys-Its measurement, interpretation and application. J Jpn Inst Light Metals 47:396–406CrossRef Komatsu S, Fujikawa S (1997) Electrical resistivity of light metals and alloys-Its measurement, interpretation and application. J Jpn Inst Light Metals 47:396–406CrossRef
24.
go back to reference Rossiter PL (1991) The electrical resistivity of metals and alloys. Cambridge University Press Rossiter PL (1991) The electrical resistivity of metals and alloys. Cambridge University Press
25.
go back to reference Raeisinia B, Poole JW, Lloyd DJ (2006) Examination of precipitation in the aluminum alloy AA6111 using electrical resistivity measurements. Mater Sci Eng A 420:245–249CrossRef Raeisinia B, Poole JW, Lloyd DJ (2006) Examination of precipitation in the aluminum alloy AA6111 using electrical resistivity measurements. Mater Sci Eng A 420:245–249CrossRef
26.
go back to reference Archambault P, Godard D (2000) High temperature precipitation kinetics and TTT curve of a 7xxx alloy by in situ electrical resistivity measurements and differential calorimetry. Scripta Mater 42:675–680CrossRef Archambault P, Godard D (2000) High temperature precipitation kinetics and TTT curve of a 7xxx alloy by in situ electrical resistivity measurements and differential calorimetry. Scripta Mater 42:675–680CrossRef
27.
go back to reference Wang SC, Starink MJ (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215CrossRef Wang SC, Starink MJ (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215CrossRef
28.
go back to reference Jung JG, Park JS, Lee YK (2013) Quantitative analyses of dissolution and precipitation kinetics of θ–Al2Cu phase in an Al-6 2Si–2.9Cu alloy using electrical resistivity. Metals Mater Int 19(2):147–152CrossRef Jung JG, Park JS, Lee YK (2013) Quantitative analyses of dissolution and precipitation kinetics of θ–Al2Cu phase in an Al-6 2Si–2.9Cu alloy using electrical resistivity. Metals Mater Int 19(2):147–152CrossRef
29.
go back to reference Li XM, Yu JJ (2013) Modeling the effects of Cu variations on the precipitated phases and properties of Al–Zn–Mg–Cu alloys. JMEPEG 22:2970–2981CrossRef Li XM, Yu JJ (2013) Modeling the effects of Cu variations on the precipitated phases and properties of Al–Zn–Mg–Cu alloys. JMEPEG 22:2970–2981CrossRef
30.
go back to reference Deschamps A, Brechet Y (1998) Influence of predeformation and ageing of an Al–Zn–Mg alloy-II. Modeling of precipitation kinetics and yield stress. Acta Mater 47(1):293–305CrossRef Deschamps A, Brechet Y (1998) Influence of predeformation and ageing of an Al–Zn–Mg alloy-II. Modeling of precipitation kinetics and yield stress. Acta Mater 47(1):293–305CrossRef
Metadata
Title
Non-isothermal precipitation kinetics and its effect on hot working behaviors of an Al–Zn–Mg–Cu alloy
Authors
Fulin Jiang
Hui Zhang
Publication date
11-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1691-4

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners