Skip to main content
Top
Published in: Quantum Information Processing 9/2018

01-09-2018

Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer

Authors: Saipriya Satyajit, Karthik Srinivasan, Bikash K. Behera, Prasanta K. Panigrahi

Published in: Quantum Information Processing | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Measurement-based quantum computation (MQC) is a leading paradigm for building a quantum computer. Cluster states being used in this context act as one-way quantum computers. Here, we consider Z-states as a type of highly entangled states like cluster states, which can be used for one-way or measurement-based quantum computation. We define Z-state basis as a set of orthonormal states which are as equally entangled as the cluster states. We design new quantum circuits to nondestructively discriminate these highly entangled Z-states. The proposed quantum circuits can be generalized for N-qubit quantum system. We confirm the preservation of Z-states after the performance of the circuit by quantum state tomography process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
go back to reference Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. A 70, 1895 (1993)ADSMathSciNetMATH Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. A 70, 1895 (1993)ADSMathSciNetMATH
3.
go back to reference Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, U.: Entanglement teleportation through GHZ-class states. New J. Phys. 4, 48 (2002)ADSCrossRef Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, U.: Entanglement teleportation through GHZ-class states. New J. Phys. 4, 48 (2002)ADSCrossRef
4.
go back to reference Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADSCrossRef Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADSCrossRef
5.
go back to reference Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A Math. Theor. 42, 115303 (2009)ADSMathSciNetCrossRefMATH Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A Math. Theor. 42, 115303 (2009)ADSMathSciNetCrossRefMATH
6.
go back to reference Muralidharan, S., Karumanchi, S., Jain, S., Srikanth, R., Panigrahi, P.K.: 2N qubit “mirror states” for optimal quantum communication. Eur. Phys. J. D 61, 757–763 (2011)ADSCrossRef Muralidharan, S., Karumanchi, S., Jain, S., Srikanth, R., Panigrahi, P.K.: 2N qubit “mirror states” for optimal quantum communication. Eur. Phys. J. D 61, 757–763 (2011)ADSCrossRef
7.
go back to reference Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619–632 (2011)MathSciNetCrossRefMATH Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619–632 (2011)MathSciNetCrossRefMATH
8.
go back to reference Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Europhys. Lett. 87, 60008 (2009)ADSCrossRef Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Europhys. Lett. 87, 60008 (2009)ADSCrossRef
9.
go back to reference Prasath, E.S., Muralidharan, S., Mitra, C., Panigrahi, P.K.: Multipartite entangled magnon states as quantum communication channels. Quantum Inf. Process. 11, 397–410 (2012)MathSciNetCrossRef Prasath, E.S., Muralidharan, S., Mitra, C., Panigrahi, P.K.: Multipartite entangled magnon states as quantum communication channels. Quantum Inf. Process. 11, 397–410 (2012)MathSciNetCrossRef
10.
go back to reference Panigrahi, P.K., Karumanchi, S., Muralidharan, S.: Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state. Pramana J. Phys. 73, 499–504 (2009)ADSCrossRef Panigrahi, P.K., Karumanchi, S., Muralidharan, S.: Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state. Pramana J. Phys. 73, 499–504 (2009)ADSCrossRef
11.
go back to reference Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)ADSCrossRef Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)ADSCrossRef
12.
go back to reference Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)ADSCrossRef Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)ADSCrossRef
14.
go back to reference Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)ADSMathSciNetCrossRefMATH Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)ADSMathSciNetCrossRefMATH
15.
go back to reference Gupta, M., Pathak, A., Srikanth, R., Panigrahi, P.K.: General circuits for indirecting and distributing measurement in quantum computation. Int. J. Quantum Inf. 5, 627–640 (2007)CrossRefMATH Gupta, M., Pathak, A., Srikanth, R., Panigrahi, P.K.: General circuits for indirecting and distributing measurement in quantum computation. Int. J. Quantum Inf. 5, 627–640 (2007)CrossRefMATH
16.
go back to reference Panigrahi, P.K., Gupta, M., Pathak, A., Srikanth, R.: Circuits for distributing quantum measurement. AIP Conf. Proc. 864, 197–207 (2006)ADSCrossRefMATH Panigrahi, P.K., Gupta, M., Pathak, A., Srikanth, R.: Circuits for distributing quantum measurement. AIP Conf. Proc. 864, 197–207 (2006)ADSCrossRefMATH
17.
go back to reference Munro, W.J., et al.: Efficient optical quantum information processing. J. Opt. B Quantum Semiclass. Opt. 7, S135 (2005)CrossRef Munro, W.J., et al.: Efficient optical quantum information processing. J. Opt. B Quantum Semiclass. Opt. 7, S135 (2005)CrossRef
18.
go back to reference Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Xie, L.-J.: Nondestructive Greenberger–Horne–Zeilinger-state analyzer. Quantum Inf. Process. 12, 1065–1075 (2013)ADSMathSciNetCrossRefMATH Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Xie, L.-J.: Nondestructive Greenberger–Horne–Zeilinger-state analyzer. Quantum Inf. Process. 12, 1065–1075 (2013)ADSMathSciNetCrossRefMATH
19.
go back to reference Zheng, C., Gu, Y., Li, W., Wang, Z., Zhang, J.: Complete distributed hyper-entangled-bell-state analysis and quantum super dense coding. Int. J. Theor. Phys. 55, 1019–1027 (2016)MathSciNetCrossRefMATH Zheng, C., Gu, Y., Li, W., Wang, Z., Zhang, J.: Complete distributed hyper-entangled-bell-state analysis and quantum super dense coding. Int. J. Theor. Phys. 55, 1019–1027 (2016)MathSciNetCrossRefMATH
20.
go back to reference Samal, J.R., Gupta, M., Panigrahi, P.K., Kuma, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B Atom. Mol. Opt. Phys. 43, 095508 (2010)ADSCrossRef Samal, J.R., Gupta, M., Panigrahi, P.K., Kuma, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B Atom. Mol. Opt. Phys. 43, 095508 (2010)ADSCrossRef
21.
go back to reference Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860–3874 (2017)ADSCrossRef Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860–3874 (2017)ADSCrossRef
22.
go back to reference Li, J., Shi, B.-S., Jiang, Y.-K., Fan, X.-F., Guo, G.-C.: A non-destructive discrimination scheme on 2n-partite GHz bases. J. Phys. B At. Mol. Opt. Phys. 33, 3215 (2000)ADSCrossRef Li, J., Shi, B.-S., Jiang, Y.-K., Fan, X.-F., Guo, G.-C.: A non-destructive discrimination scheme on 2n-partite GHz bases. J. Phys. B At. Mol. Opt. Phys. 33, 3215 (2000)ADSCrossRef
23.
go back to reference Luo, Q.-B., Yang, G.-W., She, K., Niu, W-n, Wang, Y-q: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13, 2343–2352 (2014)ADSMathSciNetCrossRefMATH Luo, Q.-B., Yang, G.-W., She, K., Niu, W-n, Wang, Y-q: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13, 2343–2352 (2014)ADSMathSciNetCrossRefMATH
26.
go back to reference Raussendorf, R., Briegel, H.J.: Computational model underlying the one-way quantum computer. Quantum Inf. Comput. 2, 443–486 (2002)MathSciNetMATH Raussendorf, R., Briegel, H.J.: Computational model underlying the one-way quantum computer. Quantum Inf. Comput. 2, 443–486 (2002)MathSciNetMATH
27.
go back to reference Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation using cluster states. Phys. Rev. A 68, 022312 (2003)ADSCrossRef Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation using cluster states. Phys. Rev. A 68, 022312 (2003)ADSCrossRef
28.
go back to reference Aliferis, P., Leung, D.W.: Computation by measurements: A unifying picture. Phys. Rev. A 70, 062314 (2004)ADSCrossRef Aliferis, P., Leung, D.W.: Computation by measurements: A unifying picture. Phys. Rev. A 70, 062314 (2004)ADSCrossRef
30.
go back to reference Childs, A.M., Leung, D.W., Nielsen, M.A.: Unified derivations of measurement-based schemes for quantum computation. Phys. Rev. A 71, 032318 (2005)ADSCrossRef Childs, A.M., Leung, D.W., Nielsen, M.A.: Unified derivations of measurement-based schemes for quantum computation. Phys. Rev. A 71, 032318 (2005)ADSCrossRef
31.
go back to reference Browne, D .E., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New J. Phys. 9, 250 (2007)ADSCrossRef Browne, D .E., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New J. Phys. 9, 250 (2007)ADSCrossRef
32.
go back to reference Verstraete, F., Cirac, J.I.: Valence-bond states for quantum computation. Phys. Rev. A 70, 060302 (2004)ADSCrossRef Verstraete, F., Cirac, J.I.: Valence-bond states for quantum computation. Phys. Rev. A 70, 060302 (2004)ADSCrossRef
33.
go back to reference Gross, D., Eisert, J.: Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007)ADSCrossRef Gross, D., Eisert, J.: Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007)ADSCrossRef
34.
go back to reference Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRef Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRef
35.
go back to reference Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)ADSCrossRef Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)ADSCrossRef
37.
go back to reference Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)ADSCrossRef Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)ADSCrossRef
38.
go back to reference Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSCrossRef Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSCrossRef
39.
go back to reference Rundle, R.P., Mills, P.W., Tilma, T., Samson, J.H., Everitt, M.J.: Simple procedure for phase-space measurement and entanglement validation. Phys. Rev. A 96, 022117 (2017)ADSCrossRef Rundle, R.P., Mills, P.W., Tilma, T., Samson, J.H., Everitt, M.J.: Simple procedure for phase-space measurement and entanglement validation. Phys. Rev. A 96, 022117 (2017)ADSCrossRef
40.
41.
go back to reference Grimaldi, D., Marinov, M.: Distributed measurement systems. Measurement 30, 279–287 (2001)CrossRef Grimaldi, D., Marinov, M.: Distributed measurement systems. Measurement 30, 279–287 (2001)CrossRef
42.
go back to reference Kalra, A.R., Prakash, S., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of the No Hiding Theorem Using a 5 Qubit Quantum Computer. arXiv:1707.09462 (2017) Kalra, A.R., Prakash, S., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of the No Hiding Theorem Using a 5 Qubit Quantum Computer. arXiv:​1707.​09462 (2017)
43.
go back to reference Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated Error Correction in IBM Quantum Computer and Explicit Generalization. arXiv:1708.02297 (2017) Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated Error Correction in IBM Quantum Computer and Explicit Generalization. arXiv:​1708.​02297 (2017)
44.
go back to reference Gangopadhyay, S., Manabputra, Behera, B.K., Panigrahi, P.K.: Generalization and Partial Demonstration of an Entanglement Based Deutsch–Jozsa Like Algorithm Using a 5-Qubit Quantum Computer. arXiv:1708.06375 (2017) Gangopadhyay, S., Manabputra, Behera, B.K., Panigrahi, P.K.: Generalization and Partial Demonstration of an Entanglement Based Deutsch–Jozsa Like Algorithm Using a 5-Qubit Quantum Computer. arXiv:​1708.​06375 (2017)
45.
go back to reference Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. arXiv:1703.10793 (2017) Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. arXiv:​1703.​10793 (2017)
46.
go back to reference Majumder, A., Mohapatra, S., Kumar, A.: Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. arXiv:1707.07460 (2017) Majumder, A., Mohapatra, S., Kumar, A.: Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. arXiv:​1707.​07460 (2017)
47.
go back to reference Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience arXiv:1611.07851 (2017) Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience arXiv:​1611.​07851 (2017)
48.
go back to reference Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and Experimental Realization of an Optimal Scheme for Teleportation of an n-Qubit Quantum State. arXiv:1704.05294 (2017) Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and Experimental Realization of an Optimal Scheme for Teleportation of an n-Qubit Quantum State. arXiv:​1704.​05294 (2017)
49.
go back to reference Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of Non-local Controlled-Unitary Quantum Gates Using a Five-qubit Quantum Computer. arXiv:1709.05697 (2017) Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of Non-local Controlled-Unitary Quantum Gates Using a Five-qubit Quantum Computer. arXiv:​1709.​05697 (2017)
50.
51.
go back to reference Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: A Verification Algorithm and Its Application to Quantum Locker in IBM Quantum Computer. arXiv:1710.05196 (2017) Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: A Verification Algorithm and Its Application to Quantum Locker in IBM Quantum Computer. arXiv:​1710.​05196 (2017)
52.
go back to reference Roy, S., Behera, B.K., Panigrahi, P.K.: Demonstration of Entropic Non-contextual Inequality Using IBM Quantum Computer. arXiv:1710.10717 (2017) Roy, S., Behera, B.K., Panigrahi, P.K.: Demonstration of Entropic Non-contextual Inequality Using IBM Quantum Computer. arXiv:​1710.​10717 (2017)
53.
go back to reference Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Experimental Demonstration of Quantum Repeater in IBM Quantum Computer. arXiv:1712.00854 (2017) Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Experimental Demonstration of Quantum Repeater in IBM Quantum Computer. arXiv:​1712.​00854 (2017)
54.
go back to reference Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4, 1–7 (2017)ADSCrossRef Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4, 1–7 (2017)ADSCrossRef
55.
go back to reference Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)ADSCrossRef Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)ADSCrossRef
56.
go back to reference Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)ADSCrossRef Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)ADSCrossRef
57.
go back to reference Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)ADSCrossRef Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)ADSCrossRef
58.
go back to reference Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)ADSCrossRef Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)ADSCrossRef
59.
go back to reference Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2016)CrossRef Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2016)CrossRef
60.
go back to reference Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)ADSCrossRef Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)ADSCrossRef
62.
go back to reference Enrquez, M., Wintrowicz, I., Yczkowski, K.: Maximally entangled multipartite states: a brief survey. J. Phys. Conf. Ser. 698, 012003 (2016)CrossRef Enrquez, M., Wintrowicz, I., Yczkowski, K.: Maximally entangled multipartite states: a brief survey. J. Phys. Conf. Ser. 698, 012003 (2016)CrossRef
63.
go back to reference Tabia, G.N.M.: Quantum Computing with Cluster States (2011) Tabia, G.N.M.: Quantum Computing with Cluster States (2011)
65.
go back to reference Bacon, D., Flammia, S.T.: Adiabatic cluster-state quantum computing. Phys. Rev. A 82, 030303(R) (2010)ADSCrossRef Bacon, D., Flammia, S.T.: Adiabatic cluster-state quantum computing. Phys. Rev. A 82, 030303(R) (2010)ADSCrossRef
66.
go back to reference Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)ADSCrossRef Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)ADSCrossRef
67.
go back to reference Chuang, L.D., Liang, C.Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464 (2007)ADSCrossRef Chuang, L.D., Liang, C.Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464 (2007)ADSCrossRef
Metadata
Title
Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer
Authors
Saipriya Satyajit
Karthik Srinivasan
Bikash K. Behera
Prasanta K. Panigrahi
Publication date
01-09-2018
Publisher
Springer US
Published in
Quantum Information Processing / Issue 9/2018
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-1976-9

Other articles of this Issue 9/2018

Quantum Information Processing 9/2018 Go to the issue