Skip to main content
Top

2016 | OriginalPaper | Chapter

10. Nonlinear Conditioning Circuits for Piezoelectric Energy Harvesters

Authors : Adrien Badel, Elie Lefeuvre

Published in: Nonlinearity in Energy Harvesting Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Design and analysis of piezoelectric vibration energy harvesters is a complex multi-physics problem related to mechanics, materials science, and electronics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Williams, C. B., & Yates, R. B. (1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical, 52(1), 8–11.CrossRef Williams, C. B., & Yates, R. B. (1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical, 52(1), 8–11.CrossRef
2.
go back to reference Arroyo, E., Badel, A., Formosa, F., Wu, Y. P., & Qiu, J. (2012). Comparison of electromagnetic and piezoelectric vibration energy harvesters: Model and experiments. Sensors and Actuators A: Physical, 183, 148–156.CrossRef Arroyo, E., Badel, A., Formosa, F., Wu, Y. P., & Qiu, J. (2012). Comparison of electromagnetic and piezoelectric vibration energy harvesters: Model and experiments. Sensors and Actuators A: Physical, 183, 148–156.CrossRef
3.
go back to reference Krimholtz, R., Leedom, D. A., & Matthaei, G. L. (1970). New equivalent circuits for elementary piezoelectric transducers. Electronics Letters, 6(13), 398–399.CrossRef Krimholtz, R., Leedom, D. A., & Matthaei, G. L. (1970). New equivalent circuits for elementary piezoelectric transducers. Electronics Letters, 6(13), 398–399.CrossRef
4.
go back to reference Tilmans, H. A. C. (1996). Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. Journal of Micromechanics and Microengineering, 6(1), 157–176.CrossRef Tilmans, H. A. C. (1996). Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. Journal of Micromechanics and Microengineering, 6(1), 157–176.CrossRef
5.
go back to reference Yang, Y., & Tang, L. (2009). Equivalent circuit modeling of piezoelectric energy harvesters. JIMSS, 20(18), 2223–2235. Yang, Y., & Tang, L. (2009). Equivalent circuit modeling of piezoelectric energy harvesters. JIMSS, 20(18), 2223–2235.
6.
go back to reference Renno, J. M., Daqaq, M. F., & Inman, D. J. (2009). On the optimal energy harvesting from a vibration source. JSV, 320(1), 386–405.CrossRef Renno, J. M., Daqaq, M. F., & Inman, D. J. (2009). On the optimal energy harvesting from a vibration source. JSV, 320(1), 386–405.CrossRef
7.
go back to reference Guyomar, D., Badel, A., Lefeuvre, E., & Richard, C. (2005). Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(4), 584–595.CrossRef Guyomar, D., Badel, A., Lefeuvre, E., & Richard, C. (2005). Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(4), 584–595.CrossRef
8.
go back to reference Li, Y., Richard, C. (2014). Piezogenerator impedance matching using Mason equivalent circuit for harvester identification. In Presented at the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (Vol. 9057, p. 90572I). Li, Y., Richard, C. (2014). Piezogenerator impedance matching using Mason equivalent circuit for harvester identification. In Presented at the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (Vol. 9057, p. 90572I).
9.
go back to reference Erickson, R. W., & Maksimovic, D. (2001). Fundamentals of power electronics. US: Springer.CrossRef Erickson, R. W., & Maksimovic, D. (2001). Fundamentals of power electronics. US: Springer.CrossRef
10.
go back to reference Lefeuvre, E., Sebald, G., Guyomar, D., & Lallart, M. (2009). Materials, structures and power interfaces for efficient piezoelectric energy harvesting. Journal of .... Lefeuvre, E., Sebald, G., Guyomar, D., & Lallart, M. (2009). Materials, structures and power interfaces for efficient piezoelectric energy harvesting. Journal of ....
11.
go back to reference Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512.CrossRef Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512.CrossRef
12.
go back to reference Ottman, G. K., Hofmann, H. F., Bhatt, A. C., & Lesieutre, G. A. (2002). Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Transactions on Power Electronics, 17(5), 669–676.CrossRef Ottman, G. K., Hofmann, H. F., Bhatt, A. C., & Lesieutre, G. A. (2002). Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Transactions on Power Electronics, 17(5), 669–676.CrossRef
13.
go back to reference Ottman, G. K., Hofmann, H. F., & Lesieutre, G. A. (2003). Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics, 18(2), 696–703.CrossRef Ottman, G. K., Hofmann, H. F., & Lesieutre, G. A. (2003). Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics, 18(2), 696–703.CrossRef
14.
go back to reference Lefeuvre, E., Audigier, D., Richard, C., & Guyomar, D. (2007). Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Transactions on Power Electronics, 22(5), 2018–2025.CrossRef Lefeuvre, E., Audigier, D., Richard, C., & Guyomar, D. (2007). Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Transactions on Power Electronics, 22(5), 2018–2025.CrossRef
15.
go back to reference Yi, J., Su, F., Lam, Y.-H., Ki, W.-H., & Tsui, C.-Y. (2008). An energy-adaptive MPPT power management unit for micro-power vibration energy harvesting. In Presented at the 2008 IEEE International Symposium on Circuits and Systems—ISCAS 2008 (pp. 2570–2573). Yi, J., Su, F., Lam, Y.-H., Ki, W.-H., & Tsui, C.-Y. (2008). An energy-adaptive MPPT power management unit for micro-power vibration energy harvesting. In Presented at the 2008 IEEE International Symposium on Circuits and Systems—ISCAS 2008 (pp. 2570–2573).
16.
go back to reference Kong, N., & Ha, D. S. (2012). Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking. IEEE Transactions on Power Electronics, 27(5), 2298–2308.CrossRef Kong, N., & Ha, D. S. (2012). Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking. IEEE Transactions on Power Electronics, 27(5), 2298–2308.CrossRef
17.
go back to reference Shim, M., Kim, J., Jung, J., & Kim, C. (2014). Self-powered 30 \(\mu \)W-to-10 mW piezoelectric energy-harvesting system with 9.09ms/V maximum power point tracking time. In 2014 IEEE International Solid- State Circuits Conference (ISSCC) (pp. 406–407). Shim, M., Kim, J., Jung, J., & Kim, C. (2014). Self-powered 30 \(\mu \)W-to-10 mW piezoelectric energy-harvesting system with 9.09ms/V maximum power point tracking time. In 2014 IEEE International Solid- State Circuits Conference (ISSCC) (pp. 406–407).
18.
go back to reference Bandyopadhyay, S., Mercier, P. P., Lysaght, A. C., Stankovic, K. M., & Chandrakasan, A. P. (2014). A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants. IEEE Journal of Solid-state Circuits, 49(12), 2812–2824.CrossRef Bandyopadhyay, S., Mercier, P. P., Lysaght, A. C., Stankovic, K. M., & Chandrakasan, A. P. (2014). A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants. IEEE Journal of Solid-state Circuits, 49(12), 2812–2824.CrossRef
19.
go back to reference Richard, C., Guyomar, D., Audigier, D., & Ching, G. (1999). Semi-passive damping using continuous switching of a piezoelectric device. In Presented at the 1999 Symposium on Smart Structures and Materials, 3672, 104–111. Richard, C., Guyomar, D., Audigier, D., & Ching, G. (1999). Semi-passive damping using continuous switching of a piezoelectric device. In Presented at the 1999 Symposium on Smart Structures and Materials, 3672, 104–111.
20.
go back to reference Badel, A. (2005). Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion. JIMSS, 16(10), 889–901. Badel, A. (2005). Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion. JIMSS, 16(10), 889–901.
21.
go back to reference Lefeuvre, E., Badel, A., Richard, C., & Guyomar, D. (2004). High-performance piezoelectric vibration energy reclamation. Smart Structures and Materials, 5390, 379–387. Lefeuvre, E., Badel, A., Richard, C., & Guyomar, D. (2004). High-performance piezoelectric vibration energy reclamation. Smart Structures and Materials, 5390, 379–387.
22.
go back to reference Shu, Y. C., Lien, I. C., & Wu, W. J. (2007). An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16(6), 2253–2264.CrossRef Shu, Y. C., Lien, I. C., & Wu, W. J. (2007). An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16(6), 2253–2264.CrossRef
23.
go back to reference Lefeuvre, E., Badel, A., Richard, C., Petit, L., & Guyomar, D. (2006). A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators A: Physical, 126(2), 405–416.CrossRef Lefeuvre, E., Badel, A., Richard, C., Petit, L., & Guyomar, D. (2006). A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators A: Physical, 126(2), 405–416.CrossRef
24.
go back to reference Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B., & Wel, T. R. (2001). The energy harvesting Eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26(4), 539–547.CrossRef Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B., & Wel, T. R. (2001). The energy harvesting Eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26(4), 539–547.CrossRef
25.
go back to reference Badel, A., Benayad, A., Lefeuvre, E., Lebrun, L., Richard, C., & Guyomar, D. (2006). Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(4), 673–684. Badel, A., Benayad, A., Lefeuvre, E., Lebrun, L., Richard, C., & Guyomar, D. (2006). Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(4), 673–684.
26.
go back to reference Lefeuvre, E. (2005). Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. JIMSS, 16(10), 865–876. Lefeuvre, E. (2005). Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. JIMSS, 16(10), 865–876.
27.
go back to reference Makihara, K., Onoda, J., & Miyakawa, T. (2006). Low energy dissipation electric circuit for energy harvesting. Smart Materials and Structures, 15(5), 1493–1498.CrossRef Makihara, K., Onoda, J., & Miyakawa, T. (2006). Low energy dissipation electric circuit for energy harvesting. Smart Materials and Structures, 15(5), 1493–1498.CrossRef
28.
go back to reference Lallart, M., & Guyomar, D. (May 2008). An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials andStructures, 17(3), 035030–9. Lallart, M., & Guyomar, D. (May 2008). An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials andStructures, 17(3), 035030–9.
29.
go back to reference Garbuio, L., Lallart, M., Guyomar, D., Richard, C., & Audigier, D. (2009). Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique. IEEE Transactions on Industrial Electronics, 56(4), 1048–1056.CrossRef Garbuio, L., Lallart, M., Guyomar, D., Richard, C., & Audigier, D. (2009). Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique. IEEE Transactions on Industrial Electronics, 56(4), 1048–1056.CrossRef
30.
go back to reference Elliott, A. D. T., & Mitcheson, P. D. (2012). Implementation of a single supply pre-biasing circuit for piezoelectric energy harvesters. Procedia Engineering, 47, 1311–1314.CrossRef Elliott, A. D. T., & Mitcheson, P. D. (2012). Implementation of a single supply pre-biasing circuit for piezoelectric energy harvesters. Procedia Engineering, 47, 1311–1314.CrossRef
31.
go back to reference Lallart, M., Garbuio, L., Petit, L., Richard, C., & Guyomar, D. (2008). Double synchronized switch harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(10), 2119–2130.CrossRef Lallart, M., Garbuio, L., Petit, L., Richard, C., & Guyomar, D. (2008). Double synchronized switch harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(10), 2119–2130.CrossRef
32.
go back to reference Shen, H., Qiu, J., Ji, H., Zhu, K., & Balsi, M. (2010). Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction. Smart Materials and Structures, 19(11), 115017.CrossRef Shen, H., Qiu, J., Ji, H., Zhu, K., & Balsi, M. (2010). Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction. Smart Materials and Structures, 19(11), 115017.CrossRef
33.
go back to reference Wu, W. J., Wickenheiser, A. M., Reissman, T., & Garcia, E. (2009). Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers. Smart Materials and Structures, 18(5), 055012–15. Wu, W. J., Wickenheiser, A. M., Reissman, T., & Garcia, E. (2009). Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers. Smart Materials and Structures, 18(5), 055012–15.
34.
go back to reference Dicken, J., Mitcheson, P. D., & Stoianov, I. (2009). Increased power output from piezoelectric energy harvesters by pre-biasing. In Presented at the PowerMEMS 2011. Dicken, J., Mitcheson, P. D., & Stoianov, I. (2009). Increased power output from piezoelectric energy harvesters by pre-biasing. In Presented at the PowerMEMS 2011.
35.
go back to reference Liu, Y., Tian, G., Wang, Y., Lin, J., Zhang, Q. H. F., & Hofmann (2009). Active piezoelectric energy harvesting: general principle and experimental demonstration. JIMSS, 20(5), 575–585. Liu, Y., Tian, G., Wang, Y., Lin, J., Zhang, Q. H. F., & Hofmann (2009). Active piezoelectric energy harvesting: general principle and experimental demonstration. JIMSS, 20(5), 575–585.
36.
go back to reference Deterre, M., Lefeuvre, E., & Dufour-Gergam, E. (2012). An active piezoelectric energy extraction method for pressure energy harvesting. Smart Materials and Structures, 21(8), 085004.CrossRef Deterre, M., Lefeuvre, E., & Dufour-Gergam, E. (2012). An active piezoelectric energy extraction method for pressure energy harvesting. Smart Materials and Structures, 21(8), 085004.CrossRef
37.
go back to reference Wu, Y. P., Badel, A., Formosa, F., Liu, W. Q., & Agbossou, A. E. (2013). Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. JIMSS, 24(12), 1445–1458. Wu, Y. P., Badel, A., Formosa, F., Liu, W. Q., & Agbossou, A. E. (2013). Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. JIMSS, 24(12), 1445–1458.
38.
go back to reference Wu, Y. P., Badel, A., Formosa, F., Liu, W. Q., & Agbossou, A. (2014). Self-powered optimized synchronous electric charge extraction circuit for piezoelectric energy harvesting. JIMSS, 25(17), 2165–2176. Wu, Y. P., Badel, A., Formosa, F., Liu, W. Q., & Agbossou, A. (2014). Self-powered optimized synchronous electric charge extraction circuit for piezoelectric energy harvesting. JIMSS, 25(17), 2165–2176.
39.
go back to reference Gammaitoni, L., Neri, I., & Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physics Letters, 94(16), 164102.CrossRef Gammaitoni, L., Neri, I., & Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physics Letters, 94(16), 164102.CrossRef
40.
go back to reference Eichhorn, C., Tchagsim, R., Wilhelm, N., & Woias, P. (2011). A smart and self-sufficient frequency tunable vibration energy harvester. Journal of Micromechanics and Microengineering, 21(10), 104003.CrossRef Eichhorn, C., Tchagsim, R., Wilhelm, N., & Woias, P. (2011). A smart and self-sufficient frequency tunable vibration energy harvester. Journal of Micromechanics and Microengineering, 21(10), 104003.CrossRef
41.
go back to reference Ahmed Seddik, B., Despesse, & Defay, E. (2012). Autonomous wideband mechanical energy harvester. In Presented at the IEEE International Symposium on Industrial Electronics ISIE, Hangzhou, China. Ahmed Seddik, B., Despesse, & Defay, E. (2012). Autonomous wideband mechanical energy harvester. In Presented at the IEEE International Symposium on Industrial Electronics ISIE, Hangzhou, China.
42.
go back to reference Badel, A., & Lefeuvre, E. (2014). Wideband piezoelectric energy harvester tuned through its electronic interface circuit. Journal of Physics: Conference Series, 557, 012115. Badel, A., & Lefeuvre, E. (2014). Wideband piezoelectric energy harvester tuned through its electronic interface circuit. Journal of Physics: Conference Series, 557, 012115.
Metadata
Title
Nonlinear Conditioning Circuits for Piezoelectric Energy Harvesters
Authors
Adrien Badel
Elie Lefeuvre
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-20355-3_10