Skip to main content
Top

2012 | OriginalPaper | Chapter

13. Notes

Author : R. B. Bapat

Published in: Linear Algebra and Linear Models

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

References which consist of books for further reading, and original papers in the case of results which are normally not covered in other texts, are given. Brief comments about some of the results are included.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anderson, T. W., & Styan, G. P. H. (1982). Cochran’s theorem, rank additivity and tripotent matrices. In G. Kallianpur, P. R. Krishnaiah & J. K. Ghosh (Eds.), Statistics and probability: essays in honor of C. R. Rao (pp. 1–23). Amsterdam: North-Holland. Anderson, T. W., & Styan, G. P. H. (1982). Cochran’s theorem, rank additivity and tripotent matrices. In G. Kallianpur, P. R. Krishnaiah & J. K. Ghosh (Eds.), Statistics and probability: essays in honor of C. R. Rao (pp. 1–23). Amsterdam: North-Holland.
go back to reference Arnold, B. C. (1987). Majorization and the Lorentz order: a brief introduction. Berlin: Springer. CrossRef Arnold, B. C. (1987). Majorization and the Lorentz order: a brief introduction. Berlin: Springer. CrossRef
go back to reference Baksalary, O. M., & Trenkler, G. (2006). Rank of a nonnegative definite matrix, Problem 37-3. IMAGE: The Bulletin of the International Linear Algebra Society, 37, 32. Baksalary, O. M., & Trenkler, G. (2006). Rank of a nonnegative definite matrix, Problem 37-3. IMAGE: The Bulletin of the International Linear Algebra Society, 37, 32.
go back to reference Bapat, R. B. (2003). Outer inverses: Jacobi type identities and nullities of submatrices. Linear Algebra and Its Applications, 361, 107–120. MathSciNetMATHCrossRef Bapat, R. B. (2003). Outer inverses: Jacobi type identities and nullities of submatrices. Linear Algebra and Its Applications, 361, 107–120. MathSciNetMATHCrossRef
go back to reference Bapat, R. B. (2007). On generalized inverses of banded matrices. The Electronic Journal of Linear Algebra, 16, 284–290. MathSciNetMATH Bapat, R. B. (2007). On generalized inverses of banded matrices. The Electronic Journal of Linear Algebra, 16, 284–290. MathSciNetMATH
go back to reference Bapat, R. B., & Ben-Israel, A. (1995). Singular values and maximum rank minors of generalized inverses. Linear and Multilinear Algebra, 40, 153–161. MathSciNetMATHCrossRef Bapat, R. B., & Ben-Israel, A. (1995). Singular values and maximum rank minors of generalized inverses. Linear and Multilinear Algebra, 40, 153–161. MathSciNetMATHCrossRef
go back to reference Bapat, R. B., & Bing, Z. (2003). Generalized inverses of bordered matrices. The Electronic Journal of Linear Algebra, 10, 16–30. MATH Bapat, R. B., & Bing, Z. (2003). Generalized inverses of bordered matrices. The Electronic Journal of Linear Algebra, 10, 16–30. MATH
go back to reference Bapat, R. B., & Raghavan, T. E. S. (1997). Nonnegative matrices and applications. Encyclopedia of mathematical sciences (Vol. 64). Cambridge: Cambridge University Press. MATHCrossRef Bapat, R. B., & Raghavan, T. E. S. (1997). Nonnegative matrices and applications. Encyclopedia of mathematical sciences (Vol. 64). Cambridge: Cambridge University Press. MATHCrossRef
go back to reference Bapat, R. B., Bhaskara Rao, K. P. S., & Prasad, K. M. (1990). Generalized inverses over integral domains. Linear Algebra Its Applications, 140, 181–196. MathSciNetMATHCrossRef Bapat, R. B., Bhaskara Rao, K. P. S., & Prasad, K. M. (1990). Generalized inverses over integral domains. Linear Algebra Its Applications, 140, 181–196. MathSciNetMATHCrossRef
go back to reference Ben-Israel, A., & Greville, T. N. E. (1974). Generalized inverses: theory and applications. New York: Wiley-Interscience. MATH Ben-Israel, A., & Greville, T. N. E. (1974). Generalized inverses: theory and applications. New York: Wiley-Interscience. MATH
go back to reference Berman, A., & Plemmons, R. J. (1994). Nonnegative matrices in the mathematical sciences. Philadelphia: SIAM. MATHCrossRef Berman, A., & Plemmons, R. J. (1994). Nonnegative matrices in the mathematical sciences. Philadelphia: SIAM. MATHCrossRef
go back to reference Bhaskara Rao, K. P. S. (1983). On generalized inverses of matrices over integral domains. Linear Algebra and Its Applications, 40, 179–189. CrossRef Bhaskara Rao, K. P. S. (1983). On generalized inverses of matrices over integral domains. Linear Algebra and Its Applications, 40, 179–189. CrossRef
go back to reference Bhimasankaram, P. (1988). Rank factorization of a matrix and its applications. The Mathematical Scientist, 13, 4–14. MathSciNetMATH Bhimasankaram, P. (1988). Rank factorization of a matrix and its applications. The Mathematical Scientist, 13, 4–14. MathSciNetMATH
go back to reference Campbell, S. L., & Meyer, C. D. Jr. (1979). Generalized inverses of linear transformations. London: Pitman. MATH Campbell, S. L., & Meyer, C. D. Jr. (1979). Generalized inverses of linear transformations. London: Pitman. MATH
go back to reference Carlson, D. (1987). Generalized inverse invariance, partial orders, and rank minimization problems for matrices. In F. Uhlig & R. Groine (Eds.), Current trends in matrix theory (pp. 81–87). New York: Elsevier. Carlson, D. (1987). Generalized inverse invariance, partial orders, and rank minimization problems for matrices. In F. Uhlig & R. Groine (Eds.), Current trends in matrix theory (pp. 81–87). New York: Elsevier.
go back to reference Christensen, R. (1987). Plane answers to complex questions: the theory of linear models. Berlin: Springer. MATH Christensen, R. (1987). Plane answers to complex questions: the theory of linear models. Berlin: Springer. MATH
go back to reference Constantine, G. M. (1987). Combinatorial theory and statistical design. New York: Wiley. MATH Constantine, G. M. (1987). Combinatorial theory and statistical design. New York: Wiley. MATH
go back to reference Dey, A. (1986). Theory of block designs. New Delhi: Wiley Eastern. MATH Dey, A. (1986). Theory of block designs. New Delhi: Wiley Eastern. MATH
go back to reference Drazin, M. P. (1978). Natural structures on semigroups with involutions. Bulletin of the American Mathematical Society, 84, 139–141. MathSciNetMATHCrossRef Drazin, M. P. (1978). Natural structures on semigroups with involutions. Bulletin of the American Mathematical Society, 84, 139–141. MathSciNetMATHCrossRef
go back to reference Fiedler, M., & Markham, T. L. (1986). Completing a matrix when certain entries of its inverse are specified. Linear Algebra and Its Applications, 74, 225–237. MathSciNetMATHCrossRef Fiedler, M., & Markham, T. L. (1986). Completing a matrix when certain entries of its inverse are specified. Linear Algebra and Its Applications, 74, 225–237. MathSciNetMATHCrossRef
go back to reference Haynsworth, E. V. (1968). Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra and Its Applications, 1, 73–82. MathSciNetMATHCrossRef Haynsworth, E. V. (1968). Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra and Its Applications, 1, 73–82. MathSciNetMATHCrossRef
go back to reference Herman, E. A. (2010). Square-nilpotent matrix, Problem 44-4. IMAGE: The Bulletin of the International Linear Algebra Society, 44, 44. Herman, E. A. (2010). Square-nilpotent matrix, Problem 44-4. IMAGE: The Bulletin of the International Linear Algebra Society, 44, 44.
go back to reference Horn, R. A., & Johnson, C. R. (1985). Matrix analysis. Cambridge: Cambridge University Press. MATH Horn, R. A., & Johnson, C. R. (1985). Matrix analysis. Cambridge: Cambridge University Press. MATH
go back to reference Ikebe, Y., Inagaki, T., & Miyamoto, S. (1987). The monotonicity theorem, Cauchy interlace theorem and the Courant–Fischer theorem. The American Mathematical Monthly, 94(4), 352–354. MathSciNetMATHCrossRef Ikebe, Y., Inagaki, T., & Miyamoto, S. (1987). The monotonicity theorem, Cauchy interlace theorem and the Courant–Fischer theorem. The American Mathematical Monthly, 94(4), 352–354. MathSciNetMATHCrossRef
go back to reference John, P. W. M. (1971). Statistical design and analysis of experiments. New York: Macmillan. MATH John, P. W. M. (1971). Statistical design and analysis of experiments. New York: Macmillan. MATH
go back to reference Joshi, D. D. (1987). Linear estimation and design of experiments. New Delhi: Wiley Eastern. MATH Joshi, D. D. (1987). Linear estimation and design of experiments. New Delhi: Wiley Eastern. MATH
go back to reference Marsaglia, G., & Styan, G. P. H. (1974). Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra, 2, 269–292. MathSciNetCrossRef Marsaglia, G., & Styan, G. P. H. (1974). Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra, 2, 269–292. MathSciNetCrossRef
go back to reference Marshall, A. W., & Olkin, I. (1979). Inequalities: theory of majorization and its applications. New York: Academic Press. MATH Marshall, A. W., & Olkin, I. (1979). Inequalities: theory of majorization and its applications. New York: Academic Press. MATH
go back to reference McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2008). Generalized, linear, and mixed models (2nd ed.). New York: Wiley. MATH McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2008). Generalized, linear, and mixed models (2nd ed.). New York: Wiley. MATH
go back to reference Mehta, M. L. (1989). Matrix theory: selected topics and useful results (enlarged re-ed.). Delhi: Hindustan Publishing Corporation. Mehta, M. L. (1989). Matrix theory: selected topics and useful results (enlarged re-ed.). Delhi: Hindustan Publishing Corporation.
go back to reference Mirsky, L. (1955). An introduction to linear algebra. London: Oxford University Press. MATH Mirsky, L. (1955). An introduction to linear algebra. London: Oxford University Press. MATH
go back to reference Mitra, S. K. (1991). Matrix partial orders through generalized inverses: unified theory. Linear Algebra and Its Applications, 148, 237–263. MathSciNetMATHCrossRef Mitra, S. K. (1991). Matrix partial orders through generalized inverses: unified theory. Linear Algebra and Its Applications, 148, 237–263. MathSciNetMATHCrossRef
go back to reference Mitra, S. K., & Puri, M. L. (1983). The fundamental bordered matrix of linear estimation and the Duffin–Morley general linear electromechanical system. Applicable Analysis, 14, 241–258. MathSciNetMATHCrossRef Mitra, S. K., & Puri, M. L. (1983). The fundamental bordered matrix of linear estimation and the Duffin–Morley general linear electromechanical system. Applicable Analysis, 14, 241–258. MathSciNetMATHCrossRef
go back to reference Murota, K. (2000). Matrices and matroids for systems analysis. Algorithms and combinatorics (Vol. 20). Berlin: Springer. MATH Murota, K. (2000). Matrices and matroids for systems analysis. Algorithms and combinatorics (Vol. 20). Berlin: Springer. MATH
go back to reference Nambooripad, K. S. S. (1980). The natural partial order on a regular semigroup. Proceedings of the Edinburgh Mathematical Society, 23, 249–260. MathSciNetMATHCrossRef Nambooripad, K. S. S. (1980). The natural partial order on a regular semigroup. Proceedings of the Edinburgh Mathematical Society, 23, 249–260. MathSciNetMATHCrossRef
go back to reference Nordström, K. (1989). Some further aspects of the Löwner-ordering antitonicity of the Moore–Penrose inverse. Communications in Statistics—Theory and Methods, 18(12), 4471–4489. MathSciNetMATHCrossRef Nordström, K. (1989). Some further aspects of the Löwner-ordering antitonicity of the Moore–Penrose inverse. Communications in Statistics—Theory and Methods, 18(12), 4471–4489. MathSciNetMATHCrossRef
go back to reference Prasad, K. M., Bhaskara Rao, K. P. S., & Bapat, R. B. (1991). Generalized inverses over integral domains II. Group inverses and Drazin inverses. Linear Algebra and Its Applications, 146, 31–47. MathSciNetMATHCrossRef Prasad, K. M., Bhaskara Rao, K. P. S., & Bapat, R. B. (1991). Generalized inverses over integral domains II. Group inverses and Drazin inverses. Linear Algebra and Its Applications, 146, 31–47. MathSciNetMATHCrossRef
go back to reference Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). New York: Wiley. MATHCrossRef Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). New York: Wiley. MATHCrossRef
go back to reference Rao, C. R., & Mitra, S. K. (1971). Generalized inverse of matrices and its applications. New York: Wiley. MATH Rao, C. R., & Mitra, S. K. (1971). Generalized inverse of matrices and its applications. New York: Wiley. MATH
go back to reference Rao, C. R., & Rao, M. B. (1998). Matrix algebra and its applications to statistics and econometrics. Singapore: World Scientific. MATHCrossRef Rao, C. R., & Rao, M. B. (1998). Matrix algebra and its applications to statistics and econometrics. Singapore: World Scientific. MATHCrossRef
go back to reference Ravishankar, N., & Dey, D. K. (2002). A first course in linear model theory. London/Boca Raton: Chapman & Hall/CRC. Ravishankar, N., & Dey, D. K. (2002). A first course in linear model theory. London/Boca Raton: Chapman & Hall/CRC.
go back to reference Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics (2nd ed.). New York: Wiley. MATH Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics (2nd ed.). New York: Wiley. MATH
go back to reference Scheffe, H. (1959). The analysis of variance. New York: Wiley. MATH Scheffe, H. (1959). The analysis of variance. New York: Wiley. MATH
go back to reference Seber, G. A. F. (1977). Linear regression analysis. New York: Wiley. MATH Seber, G. A. F. (1977). Linear regression analysis. New York: Wiley. MATH
go back to reference Sen, A., & Srivastava, M. (1990). Regression analysis: theory, methods and applications. New York: Springer. MATH Sen, A., & Srivastava, M. (1990). Regression analysis: theory, methods and applications. New York: Springer. MATH
go back to reference Strang, G. (1980). Linear algebra and its applications (2nd ed.). New York: Academic Press. Strang, G. (1980). Linear algebra and its applications (2nd ed.). New York: Academic Press.
go back to reference Tian, Y. (2000). Two rank equalities associated with blocks of an orthogonal projector, Problem 25-4. IMAGE: The Bulletin of the International Linear Algebra Society, 25, 16. Tian, Y. (2000). Two rank equalities associated with blocks of an orthogonal projector, Problem 25-4. IMAGE: The Bulletin of the International Linear Algebra Society, 25, 16.
go back to reference Tian, Y. (2001). Rank equalities related to outer inverses of matrices and applications. Linear and Multilinear Algebra, 49(4), 269–288. MathSciNetMATHCrossRef Tian, Y. (2001). Rank equalities related to outer inverses of matrices and applications. Linear and Multilinear Algebra, 49(4), 269–288. MathSciNetMATHCrossRef
go back to reference Tian, Y., & Styan, G. P. H. (2001). Rank equalities for idempotent and involutory matrices. Linear Algebra and Its Applications, 335, 01-117. MathSciNetCrossRef Tian, Y., & Styan, G. P. H. (2001). Rank equalities for idempotent and involutory matrices. Linear Algebra and Its Applications, 335, 01-117. MathSciNetCrossRef
go back to reference Vandebril, R., Van Barel, M., & Mastronardi, N. (2008). Matrix computations and semiseparable matrices (Vol. 1). Baltimore: Johns Hopkins University Press. Vandebril, R., Van Barel, M., & Mastronardi, N. (2008). Matrix computations and semiseparable matrices (Vol. 1). Baltimore: Johns Hopkins University Press.
go back to reference Zhang, F. (1996). Linear algebra, challenging problems for students. Baltimore and London: Johns Hopkins University Press. MATH Zhang, F. (1996). Linear algebra, challenging problems for students. Baltimore and London: Johns Hopkins University Press. MATH
Metadata
Title
Notes
Author
R. B. Bapat
Copyright Year
2012
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-2739-0_13

Premium Partner