Skip to main content
Top

2015 | OriginalPaper | Chapter

7. Novel Aluminum Based Composites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Tailored Formation of Multiple Reinforcing Phases and its Mechanisms

Author : Prof. Dr. Dongdong Gu

Published in: Laser Additive Manufacturing of High-Performance Materials

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Selective laser melting (SLM) of the SiC/AlSi10Mg composites was performed to prepare the Al-based composites with the multiple reinforcing phases. The influence of the SLM processing parameters on the constitutional phases, microstructural features, and mechanical performance of the SLM-processed Al-based composites was studied. The reinforcing phases in the SLM-processed Al-based composites included the unmelted micron-sized SiC particles, the in situ formed micron-sized Al4SiC4 strips, and the in situ produced submicron Al4SiC4 particles. As the input “linear laser energy density” (LED) increased, the extent of the in situ reaction between the SiC particles and the Al matrix increased, resulting in a larger degree of formation of Al4SiC4 reinforcement. The densification rate of the SLM-processed Al-based composite parts increased as the applied LED increased. A sufficiently high density (~ 96 % theoretical density) was achieved for LED larger than 1000 J/m. Due to the generation of the multiple reinforcing phases, elevated mechanical properties were obtained for the SLM-processed Al-based composites, showing a high microhardness of 214 HV0.1, a considerably low coefficient of friction (COF) of 0.39, and a reduced wear rate of 1.56 × 10−5mm3N−1m−1. At an excessive laser energy input, the grain size of the in situ formed Al4SiC4 reinforcing phase, both the strip- and particle-structured Al4SiC4, increased markedly. The significant grain coarsening and formation of the interfacial microscopic shrinkage porosity lowered the mechanical properties of the SLM-processed Al-based composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tang L, Landers RG (2011) Layer-to-layer height control for laser metal deposition process. ASME J Manuf Sci Eng 133(2):021009CrossRef Tang L, Landers RG (2011) Layer-to-layer height control for laser metal deposition process. ASME J Manuf Sci Eng 133(2):021009CrossRef
2.
go back to reference Kamara AM, Marimuthu S, Li L (2011) A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts. ASME J Manuf Sci Eng 133(3):031013CrossRef Kamara AM, Marimuthu S, Li L (2011) A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts. ASME J Manuf Sci Eng 133(3):031013CrossRef
3.
go back to reference Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of laser power density on microstructure, microhardness, and surface finish of laser deposited titanium alloy. ASME J Manuf Sci Eng 135(6):064502CrossRef Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of laser power density on microstructure, microhardness, and surface finish of laser deposited titanium alloy. ASME J Manuf Sci Eng 135(6):064502CrossRef
4.
go back to reference Edwards P, O’Conner A, Ramulu M (2013) Electron beam additive manufacturing of titanium components: properties and performance. ASME J Manuf Sci Eng 135(6):061016CrossRef Edwards P, O’Conner A, Ramulu M (2013) Electron beam additive manufacturing of titanium components: properties and performance. ASME J Manuf Sci Eng 135(6):061016CrossRef
5.
go back to reference Sammons PM, Bristow DA, Landers RG (2013) Height dependent laser metal deposition process modeling. ASME J Manuf Sci Eng 135(5):054501CrossRef Sammons PM, Bristow DA, Landers RG (2013) Height dependent laser metal deposition process modeling. ASME J Manuf Sci Eng 135(5):054501CrossRef
6.
go back to reference Tsopanos S, Mines RAW, McKown S et al (2010) The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures. ASME J Manuf Sci Eng 132(4):041011CrossRef Tsopanos S, Mines RAW, McKown S et al (2010) The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures. ASME J Manuf Sci Eng 132(4):041011CrossRef
7.
go back to reference Chen TB, Zhang YW (2007) Three-dimensional modeling of laser sintering of a two-component metal powder layer on top of sintered layers. ASME J Manuf Sci Eng 129(3):575–582CrossRef Chen TB, Zhang YW (2007) Three-dimensional modeling of laser sintering of a two-component metal powder layer on top of sintered layers. ASME J Manuf Sci Eng 129(3):575–582CrossRef
8.
go back to reference Chen TB, Zhang YW (2006) Three-dimensional modeling of selective laser sintering of two-component metal powder layers. ASME J Manuf Sci Eng 128(1):299–306CrossRef Chen TB, Zhang YW (2006) Three-dimensional modeling of selective laser sintering of two-component metal powder layers. ASME J Manuf Sci Eng 128(1):299–306CrossRef
9.
go back to reference Xiao B, Zhang YW (2008) Numerical simulation of direct metal laser sintering of single-component powder on top of sintered layers. ASME J Manuf Sci Eng 130(4):041002CrossRef Xiao B, Zhang YW (2008) Numerical simulation of direct metal laser sintering of single-component powder on top of sintered layers. ASME J Manuf Sci Eng 130(4):041002CrossRef
10.
go back to reference Gu DD, Meiners W, Wissenbach K et al (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164CrossRef Gu DD, Meiners W, Wissenbach K et al (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164CrossRef
11.
go back to reference Kruth JP, Levy G, Klocke F et al (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol 56(2):730–759CrossRef Kruth JP, Levy G, Klocke F et al (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol 56(2):730–759CrossRef
12.
go back to reference Gu DD, Hagedorn YC, Meiners W et al (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60(9):3849–3860CrossRef Gu DD, Hagedorn YC, Meiners W et al (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60(9):3849–3860CrossRef
13.
go back to reference Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211(2):275–284CrossRef Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211(2):275–284CrossRef
14.
go back to reference Brandl E, Heckenberger U, Holzinger V et al (2012) Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169CrossRef Brandl E, Heckenberger U, Holzinger V et al (2012) Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169CrossRef
15.
go back to reference Sercombe TB, Schaffer GB (2003) Rapid manufacturing of aluminum components. Science 301(5637):1225–1227CrossRef Sercombe TB, Schaffer GB (2003) Rapid manufacturing of aluminum components. Science 301(5637):1225–1227CrossRef
16.
go back to reference Gu DD, Dai DH, Zhang GQ et al (2012) Growth mechanisms of in situ TiC in laser melted Ti-Si-C ternary system. App Phys Lett 101(17):171603CrossRef Gu DD, Dai DH, Zhang GQ et al (2012) Growth mechanisms of in situ TiC in laser melted Ti-Si-C ternary system. App Phys Lett 101(17):171603CrossRef
17.
go back to reference Gusarov AV, Yadroitsev I, Bertrand Ph et al (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. ASME J Heat Transfer 131(7):072101CrossRef Gusarov AV, Yadroitsev I, Bertrand Ph et al (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. ASME J Heat Transfer 131(7):072101CrossRef
18.
go back to reference Li YL, Gu DD (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867CrossRef Li YL, Gu DD (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867CrossRef
19.
go back to reference Agarwala M, Bourell D, Beaman J et al (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1(1):26–36CrossRef Agarwala M, Bourell D, Beaman J et al (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1(1):26–36CrossRef
20.
go back to reference Das M, Balla VK, Basu D et al (2010) Laser processing of SiC-particle-reinforced coating on titanium. Scr Mater 63(4):438–441CrossRef Das M, Balla VK, Basu D et al (2010) Laser processing of SiC-particle-reinforced coating on titanium. Scr Mater 63(4):438–441CrossRef
21.
go back to reference Lavernia EJ, Srivatsan TS (2010) The rapid solidification processing of materials: science, principles, technology, advances, and applications. J Mater Sci 45(2):287–325CrossRef Lavernia EJ, Srivatsan TS (2010) The rapid solidification processing of materials: science, principles, technology, advances, and applications. J Mater Sci 45(2):287–325CrossRef
22.
go back to reference Bartkowiak K, Ullrich S, Frick T et al (2011) New developments of laser processing aluminium alloys via additive manufacturing technique. Phys Procedia 12:393–401CrossRef Bartkowiak K, Ullrich S, Frick T et al (2011) New developments of laser processing aluminium alloys via additive manufacturing technique. Phys Procedia 12:393–401CrossRef
23.
go back to reference Dadbakhsh S, Hao L (2012) Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites. J Alloy Compd 541:328–334CrossRef Dadbakhsh S, Hao L (2012) Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites. J Alloy Compd 541:328–334CrossRef
24.
go back to reference Tang L, Landers RG (2010) Melt pool temperature control for laser metal deposition processes-part I: online temperature control. ASME J Manuf Sci Eng 132(1):011010CrossRef Tang L, Landers RG (2010) Melt pool temperature control for laser metal deposition processes-part I: online temperature control. ASME J Manuf Sci Eng 132(1):011010CrossRef
25.
go back to reference Tang L, Landers RG (2010) Melt pool temperature control for laser metal deposition processes-part II: layer-to-layer temperature control. ASME J Manuf Sci Eng 132(1):011011CrossRef Tang L, Landers RG (2010) Melt pool temperature control for laser metal deposition processes-part II: layer-to-layer temperature control. ASME J Manuf Sci Eng 132(1):011011CrossRef
26.
go back to reference Prashanth KG, Scudino S, Klauss HJ et al (2014) Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng A 590:153–160CrossRef Prashanth KG, Scudino S, Klauss HJ et al (2014) Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng A 590:153–160CrossRef
27.
go back to reference Zhang BC, Liao HL, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture. Mater Des 34:753–758CrossRef Zhang BC, Liao HL, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture. Mater Des 34:753–758CrossRef
28.
go back to reference Santos EC, Shiomi M, Osakada K et al (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46(12–13):1459–1468CrossRef Santos EC, Shiomi M, Osakada K et al (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46(12–13):1459–1468CrossRef
29.
go back to reference Kruth JP, Wang X, Laoui T et al (2003) Lasers and materials in selective laser sintering. Assem Autom 23(4):357–371CrossRef Kruth JP, Wang X, Laoui T et al (2003) Lasers and materials in selective laser sintering. Assem Autom 23(4):357–371CrossRef
30.
go back to reference Bassani P, Capello E, Colombo D et al (2007) Effect of process parameters on bead properties of A359/SiC MMCs welded by laser. Compos Part A 38(4):1089–1098CrossRef Bassani P, Capello E, Colombo D et al (2007) Effect of process parameters on bead properties of A359/SiC MMCs welded by laser. Compos Part A 38(4):1089–1098CrossRef
31.
go back to reference Eliasson J, Sandström R (1995) Applications of aluminuium matrix composites. Key Eng Mater 104–107:3–36CrossRef Eliasson J, Sandström R (1995) Applications of aluminuium matrix composites. Key Eng Mater 104–107:3–36CrossRef
32.
go back to reference Su H, Gao WL, Zhang H et al (2010) Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process. ASME J Manuf Sci Eng 132(6):061007CrossRef Su H, Gao WL, Zhang H et al (2010) Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process. ASME J Manuf Sci Eng 132(6):061007CrossRef
33.
go back to reference Yang Y, Li XC (2007) Ultrasonic cavitation-based nanomanufacturing of bulk aluminum matrix nanocomposites. ASME J Manuf Sci Eng 129(2):252–255CrossRef Yang Y, Li XC (2007) Ultrasonic cavitation-based nanomanufacturing of bulk aluminum matrix nanocomposites. ASME J Manuf Sci Eng 129(2):252–255CrossRef
34.
go back to reference Maruyama B (1999) Discontinuously reinforced aluminum: current status and future direction. JOM 51(11):59–61CrossRef Maruyama B (1999) Discontinuously reinforced aluminum: current status and future direction. JOM 51(11):59–61CrossRef
35.
go back to reference Prasada SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453CrossRef Prasada SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453CrossRef
36.
go back to reference Asgharzadeh H, Simchi A (2009) Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites. Powder Metall 52(1):28–35CrossRef Asgharzadeh H, Simchi A (2009) Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites. Powder Metall 52(1):28–35CrossRef
37.
go back to reference Simchi A, Godlinski D (2008) Effect of SiC particles on the laser sintering of Al-7Si-0.3Mg alloy. Scr Mater 59(2):199–202CrossRef Simchi A, Godlinski D (2008) Effect of SiC particles on the laser sintering of Al-7Si-0.3Mg alloy. Scr Mater 59(2):199–202CrossRef
38.
go back to reference Simchi A, Godlinski D (2011) Densification and microstructural evolution during laser sintering of A356/SiC composite powders. J Mater Sci 46(5):1446–1454CrossRef Simchi A, Godlinski D (2011) Densification and microstructural evolution during laser sintering of A356/SiC composite powders. J Mater Sci 46(5):1446–1454CrossRef
39.
go back to reference Anandkumar R, Almeida A, Colaço R et al (2007) Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings. Surf Coat Technol 201(24):9497–9505CrossRef Anandkumar R, Almeida A, Colaço R et al (2007) Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings. Surf Coat Technol 201(24):9497–9505CrossRef
40.
go back to reference Ureña A, Rodrigo P, Gil L et al (2001) Interfacial reactions in an Al-Cu-Mg (2009)/SiCw composite during liquid processing Part II Arc welding. J Mater Sci 36(2):429–439CrossRef Ureña A, Rodrigo P, Gil L et al (2001) Interfacial reactions in an Al-Cu-Mg (2009)/SiCw composite during liquid processing Part II Arc welding. J Mater Sci 36(2):429–439CrossRef
41.
go back to reference Gu DD, Shen YF (2009) Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS. J Alloys Compd 473(1–2):107–115CrossRef Gu DD, Shen YF (2009) Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS. J Alloys Compd 473(1–2):107–115CrossRef
42.
go back to reference Gu DD, Shen YF, Yang JL et al (2006) Effects of processing parameters on direct laser sintering of multicomponent Cu based metal powder. Mater Sci Technol 22(12):1449–1455CrossRef Gu DD, Shen YF, Yang JL et al (2006) Effects of processing parameters on direct laser sintering of multicomponent Cu based metal powder. Mater Sci Technol 22(12):1449–1455CrossRef
43.
go back to reference Fischer P, Romano V, Weber HP et al (2003) Sintering of commercially pure titanium powder with a Nd: YAG laser source. Acta Mater 51(6):1651–1662CrossRef Fischer P, Romano V, Weber HP et al (2003) Sintering of commercially pure titanium powder with a Nd: YAG laser source. Acta Mater 51(6):1651–1662CrossRef
44.
go back to reference Xu G, Schultz WW, Kannatey-Asibu E (2004) Application of a front tracking method in gas metal arc welding (GMAW) simulation. ASME J Manuf Sci Eng 127(3):590–597CrossRef Xu G, Schultz WW, Kannatey-Asibu E (2004) Application of a front tracking method in gas metal arc welding (GMAW) simulation. ASME J Manuf Sci Eng 127(3):590–597CrossRef
45.
go back to reference Wu YF, Kim GY, Anderson IE et al (2010) Experimental study on viscosity and phase segregation of Al-Si powders in microsemisolid powder forming. ASME J Manuf Sci Eng 132(1):011003CrossRef Wu YF, Kim GY, Anderson IE et al (2010) Experimental study on viscosity and phase segregation of Al-Si powders in microsemisolid powder forming. ASME J Manuf Sci Eng 132(1):011003CrossRef
46.
go back to reference Jeswani AJ, Roux JA (2007) Manufacturing modeling of three-dimensional resin injection pultrusion process control parameters for polyester/glass rovings composites. ASME J Manuf Sci Eng 129(1):143–156CrossRef Jeswani AJ, Roux JA (2007) Manufacturing modeling of three-dimensional resin injection pultrusion process control parameters for polyester/glass rovings composites. ASME J Manuf Sci Eng 129(1):143–156CrossRef
47.
go back to reference Gu DD, Shen YF (2006) Processing and microstructure of submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. Mater Sci Eng A 435–436:54–61CrossRef Gu DD, Shen YF (2006) Processing and microstructure of submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. Mater Sci Eng A 435–436:54–61CrossRef
48.
go back to reference Zhou XB, De Hosson JThM (1996) Reactive wetting of liquid metals on ceramic substrates. Acta Mater 44(2):421–426CrossRef Zhou XB, De Hosson JThM (1996) Reactive wetting of liquid metals on ceramic substrates. Acta Mater 44(2):421–426CrossRef
49.
go back to reference Buchbinder D, Schleifenbaum H, Heidrich S (2011) High Power Selective Laser Melting (HP SLM) of aluminum parts. Phys Procedia 12:271–278CrossRef Buchbinder D, Schleifenbaum H, Heidrich S (2011) High Power Selective Laser Melting (HP SLM) of aluminum parts. Phys Procedia 12:271–278CrossRef
50.
go back to reference Schrock DJ, Kang D, Bieler TR et al (2014) Phase dependent tool wear in turning Ti-6Al-4V using polycrystalline diamond and carbide inserts. ASME J Manuf Sci Eng 136(4):041018CrossRef Schrock DJ, Kang D, Bieler TR et al (2014) Phase dependent tool wear in turning Ti-6Al-4V using polycrystalline diamond and carbide inserts. ASME J Manuf Sci Eng 136(4):041018CrossRef
51.
go back to reference Bassoli E, Atzeni E, Iuliano L (2011) Grinding micromechanisms of a sintered friction material. ASME J Manuf Sci Eng 133(1):014501CrossRef Bassoli E, Atzeni E, Iuliano L (2011) Grinding micromechanisms of a sintered friction material. ASME J Manuf Sci Eng 133(1):014501CrossRef
52.
go back to reference Jain A, Basu B, Kumar BVM et al (2010) Grain size-wear rate relationship for titanium in liquid nitrogen environment. Acta Mater 58(7):2313–2323CrossRef Jain A, Basu B, Kumar BVM et al (2010) Grain size-wear rate relationship for titanium in liquid nitrogen environment. Acta Mater 58(7):2313–2323CrossRef
Metadata
Title
Novel Aluminum Based Composites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Tailored Formation of Multiple Reinforcing Phases and its Mechanisms
Author
Prof. Dr. Dongdong Gu
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46089-4_7

Premium Partners