Skip to main content
Top
Published in: Journal of Nanoparticle Research 7/2013

01-07-2013 | Research Paper

Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

Authors: L. A. Strobel, N. Hild, D. Mohn, W. J. Stark, A. Hoppe, U. Gbureck, R. E. Horch, U. Kneser, A. R. Boccaccini

Published in: Journal of Nanoparticle Research | Issue 7/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30–35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Alaiti MA, Ishikawa M, Masuda H, Simon DI, Jain MK, Asahara T, Costa MA (2012) Up-regulation of miR-210 by vascular endothelial growth factor in ex vivo expanded CD34+ cells enhances cell-mediated angiogenesis. J Cell Mol Med 16:2413–2421 Alaiti MA, Ishikawa M, Masuda H, Simon DI, Jain MK, Asahara T, Costa MA (2012) Up-regulation of miR-210 by vascular endothelial growth factor in ex vivo expanded CD34+ cells enhances cell-mediated angiogenesis. J Cell Mol Med 16:2413–2421
go back to reference Arora P, Sindhu A, Dilbaghi N, Chaudhury A, Rajakumar G, Rahuman AA (2012) Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans. J Cell Mol Med 16:1991–2000 Arora P, Sindhu A, Dilbaghi N, Chaudhury A, Rajakumar G, Rahuman AA (2012) Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans. J Cell Mol Med 16:1991–2000
go back to reference Aubin JE, Liu F, Malaval L, Gupta AK (1995) Osteoblast and chondroblast differentiation. Bone 17:S77–S83CrossRef Aubin JE, Liu F, Malaval L, Gupta AK (1995) Osteoblast and chondroblast differentiation. Bone 17:S77–S83CrossRef
go back to reference Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776CrossRef Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776CrossRef
go back to reference Boyd D, Carroll G, Towler MR, Freeman C, Farthing P, Brook IM (2009) Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses. J Mater Sci Mater Med 20:413–420CrossRef Boyd D, Carroll G, Towler MR, Freeman C, Farthing P, Brook IM (2009) Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses. J Mater Sci Mater Med 20:413–420CrossRef
go back to reference Brunner TJ, Grass RN, Stark WJ (2006) Glass and bioglass nanopowders by flame synthesis. Chem Commun 13:1384–1386CrossRef Brunner TJ, Grass RN, Stark WJ (2006) Glass and bioglass nanopowders by flame synthesis. Chem Commun 13:1384–1386CrossRef
go back to reference Curtis AR, West NX, Su B (2010) Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater 6:3740–3746CrossRef Curtis AR, West NX, Su B (2010) Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater 6:3740–3746CrossRef
go back to reference Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453CrossRef Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453CrossRef
go back to reference Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, Stevens MM (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31:3949–3956CrossRef Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, Stevens MM (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31:3949–3956CrossRef
go back to reference Gorustovich AA, Roether JA, Boccaccini AR (2010a) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207CrossRef Gorustovich AA, Roether JA, Boccaccini AR (2010a) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207CrossRef
go back to reference Gorustovich AA, Steimetz T, Cabrini RL, Porto Lopez JM (2010b) Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A 92:232–237 Gorustovich AA, Steimetz T, Cabrini RL, Porto Lopez JM (2010b) Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A 92:232–237
go back to reference Hao Y, Yan H, Wang X, Zhu B, Ning C, Ge S (2012) Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. J Nanosci Nanotechnol 12:207–212CrossRef Hao Y, Yan H, Wang X, Zhu B, Ning C, Ge S (2012) Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. J Nanosci Nanotechnol 12:207–212CrossRef
go back to reference Hench L, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRef Hench L, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRef
go back to reference Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRef Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRef
go back to reference Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier JM (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater 21:130–143 Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier JM (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater 21:130–143
go back to reference Labbaf S, Tsigkou O, Müller KH, Stevens MM, Porter AE, Jones JR (2011) Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32:1010–1018CrossRef Labbaf S, Tsigkou O, Müller KH, Stevens MM, Porter AE, Jones JR (2011) Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32:1010–1018CrossRef
go back to reference Lao J, Jallot E, Nedelec JM (2008) Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chem Mater 20:4969–4973CrossRef Lao J, Jallot E, Nedelec JM (2008) Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chem Mater 20:4969–4973CrossRef
go back to reference Lim JY, Loiselle AE, Lee JS, Zhang Y, Salvi JD, Donahue HJ (2011) Optimizing the osteogenic potential of adult stem cells for skeletal regeneration. J Orthop Res 29:1627–1633CrossRef Lim JY, Loiselle AE, Lee JS, Zhang Y, Salvi JD, Donahue HJ (2011) Optimizing the osteogenic potential of adult stem cells for skeletal regeneration. J Orthop Res 29:1627–1633CrossRef
go back to reference Mačković M, Hoppe A, Detsch R, Mohn D, Stark WJ, Spiecker E, Boccaccini AR (2012) Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. J Nanopart Res 14:966CrossRef Mačković M, Hoppe A, Detsch R, Mohn D, Stark WJ, Spiecker E, Boccaccini AR (2012) Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. J Nanopart Res 14:966CrossRef
go back to reference Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129CrossRef Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129CrossRef
go back to reference Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR (2008) Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials 29:1750–1761CrossRef Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR (2008) Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials 29:1750–1761CrossRef
go back to reference Mohn D, Bruhin C, Luechinger NA, Stark WJ, Imfeld T, Zehnder M (2010) Composites made of flame-sprayed bioactive glass 45S5 and polymers: bioactivity and immediate sealing properties. Int Endod J 43:1037–1046CrossRef Mohn D, Bruhin C, Luechinger NA, Stark WJ, Imfeld T, Zehnder M (2010) Composites made of flame-sprayed bioactive glass 45S5 and polymers: bioactivity and immediate sealing properties. Int Endod J 43:1037–1046CrossRef
go back to reference Peng S, Zhou G, Luk KD, Cheung KM, Li Z, Lam WM, Zhou Z, Lu WW (2009) Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem 23:165–174CrossRef Peng S, Zhou G, Luk KD, Cheung KM, Li Z, Lam WM, Zhou Z, Lu WW (2009) Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem 23:165–174CrossRef
go back to reference Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53:25–35 Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53:25–35
go back to reference Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108CrossRef Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108CrossRef
go back to reference Sun JY, Yang YS, Zhong J, Greenspan DC (2007) The effect of the ionic products of bioglass dissolution on human osteoblasts growth cycle in vitro. J Tissue Eng Regen Med 1:281–286CrossRef Sun JY, Yang YS, Zhong J, Greenspan DC (2007) The effect of the ionic products of bioglass dissolution on human osteoblasts growth cycle in vitro. J Tissue Eng Regen Med 1:281–286CrossRef
go back to reference Teoh WY, Amal R, Mädler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–1347CrossRef Teoh WY, Amal R, Mädler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–1347CrossRef
go back to reference Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T, Stark WJ (2007) Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater 3:936–943CrossRef Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T, Stark WJ (2007) Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater 3:936–943CrossRef
go back to reference Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86:754–757CrossRef Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86:754–757CrossRef
go back to reference Wu C, Zhou Y, Lin C, Chang J, Xiao Y (2012) Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater 8:3805–3815CrossRef Wu C, Zhou Y, Lin C, Chang J, Xiao Y (2012) Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater 8:3805–3815CrossRef
go back to reference Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465CrossRef Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465CrossRef
go back to reference Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29:981–991CrossRef Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29:981–991CrossRef
Metadata
Title
Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells
Authors
L. A. Strobel
N. Hild
D. Mohn
W. J. Stark
A. Hoppe
U. Gbureck
R. E. Horch
U. Kneser
A. R. Boccaccini
Publication date
01-07-2013
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 7/2013
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1780-5

Other articles of this Issue 7/2013

Journal of Nanoparticle Research 7/2013 Go to the issue

Premium Partners