Skip to main content
Top
Published in: Journal of Polymer Research 6/2015

01-06-2015 | Original Paper

Novel water-soluble chitosan derivative prepared by graft polymerization of dicyandiamide: synthesis, characterisation, and its antibacterial property

Authors: Esra Suliman Khalil, Bahruddin Saad, El-Sayed Moussa Negim, Muhammad Idiris Saleh

Published in: Journal of Polymer Research | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Novel water soluble chitosan derivative of dicyandiamide chitosan (DCDA-g-CS) was synthesized by grafting polymerization of dicyandiamide DCDA onto chitosan CS. The presence of a new absorption peak in the infrared region of nitrile at 2297 cm−1 and NH at 1635 cm−1 of DCDA-g-CS and the chemical shift of 13C NMR at 120 and 162 ppm due to the presence of nitrile and carbon in DCDA clearly shows that the grafting process has taken place. The strong signal in the 1H NMR at 2.5 ppm could be assigned to the four protons in the amino group of DCDA, further confirms the formation of DCDA-g-CS. The polymer has shown to undergoing three steps of thermal degradation. The first stage was between 30 and 157 °C, followed by degradation step up to 350 °C and continuously degraded up to the high temperature set at 850 °C. The rate of degradation in the second stage which is slightly faster was considered as the rate determining step. The value of Tg was increased to 92.75 °C in DCDA-g-CS due to the considerable amount of DCDA was grafted onto the CS. The DCDA-g-CS was more soluble in water due to the decrease in crystallinity of chitosan after grafting as shown from X-ray diffraction spectra. The DCDA-g-CS shows high antibacterial activity at pH 7.0 and pH 4.0 the minimum inhibitory concentration (MIC) of gram-negative bacteria E. coli ATCC25922, the MIC at pH 7 and pH 4.0 were 62.5 and 125 μg/mL respectively and gram-positive bacteria S. aureus ATCC 29213, the MIC at pH 7 and pH 4 were 62.5 and 125 μg/mL respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Don TM, King CF, Chiu WY (2002) Synthesis and properties of chitosan-modified poly (vinyl acetate). J Appl Polym Sci 86(12):3057–3063CrossRef Don TM, King CF, Chiu WY (2002) Synthesis and properties of chitosan-modified poly (vinyl acetate). J Appl Polym Sci 86(12):3057–3063CrossRef
2.
go back to reference Beckera T, Schlaak M, Strasdeit H (2000) Adsorption of nickel (II), zinc(II) and cadmium(II) by new chitosan derivatives. React Funct Polym 44:289–298CrossRef Beckera T, Schlaak M, Strasdeit H (2000) Adsorption of nickel (II), zinc(II) and cadmium(II) by new chitosan derivatives. React Funct Polym 44:289–298CrossRef
3.
go back to reference Pati MK, Nayak P (2011) Grafting vinyl monomers onto chitosan graft copolymerized of acrylic acid onto chitosan using ceric ammonium nitrate as the initiator characterization and antimicrobial activities. Mater Sci Appl 2:1741–1748 Pati MK, Nayak P (2011) Grafting vinyl monomers onto chitosan graft copolymerized of acrylic acid onto chitosan using ceric ammonium nitrate as the initiator characterization and antimicrobial activities. Mater Sci Appl 2:1741–1748
4.
go back to reference Joshi JM, Sinha VK (2006) Synthesis and characterization of carboxymethyl chitosan grafted methacrylic acid initiated by ceric ammonium nitrate. J Polym Res 13:387–395CrossRef Joshi JM, Sinha VK (2006) Synthesis and characterization of carboxymethyl chitosan grafted methacrylic acid initiated by ceric ammonium nitrate. J Polym Res 13:387–395CrossRef
5.
go back to reference Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan-present status and applications. Carbohydr Polym 62(2):142–158CrossRef Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan-present status and applications. Carbohydr Polym 62(2):142–158CrossRef
6.
go back to reference Badawy ME, Rabea EI, Rogge TM (2004) Synthesis and fungicidal activity of new N, O-acyl chitosan derivatives. Biomacromolecules 5(2):589–595CrossRef Badawy ME, Rabea EI, Rogge TM (2004) Synthesis and fungicidal activity of new N, O-acyl chitosan derivatives. Biomacromolecules 5(2):589–595CrossRef
7.
go back to reference Majeti NV, Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRef Majeti NV, Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRef
8.
go back to reference El-Tahlawy K, Hudson SM (2006) Chitosan aspects of fiber spinnability. J Appl Polym Sci 100(2):1162–1168CrossRef El-Tahlawy K, Hudson SM (2006) Chitosan aspects of fiber spinnability. J Appl Polym Sci 100(2):1162–1168CrossRef
9.
go back to reference Shanmugapriya A, Ramammurthy R, Munusamy V, Parapurath SN (2011) Optimization of ceric ammonium nitrate initiated graft copolymerization of acrylonitrile onto chitosan. J Water Resour Prot 3:380–386CrossRef Shanmugapriya A, Ramammurthy R, Munusamy V, Parapurath SN (2011) Optimization of ceric ammonium nitrate initiated graft copolymerization of acrylonitrile onto chitosan. J Water Resour Prot 3:380–386CrossRef
10.
go back to reference Akgün S, Ekici G, Mutlu N, Beşirli N, Hazer B (2007) Springer Sci Polym Res 14:215–221CrossRef Akgün S, Ekici G, Mutlu N, Beşirli N, Hazer B (2007) Springer Sci Polym Res 14:215–221CrossRef
11.
go back to reference Chang-Woo N, Young HJ (2001) Blend fibers of polyacrylonitrile and water-soluble chitosan derivative prepared from sodium thiocyanate solution. Appl Polym Sci 82(7):1620–1629CrossRef Chang-Woo N, Young HJ (2001) Blend fibers of polyacrylonitrile and water-soluble chitosan derivative prepared from sodium thiocyanate solution. Appl Polym Sci 82(7):1620–1629CrossRef
12.
go back to reference El-Sherbiny IM (2008) Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur Polym J 45:199–210CrossRef El-Sherbiny IM (2008) Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur Polym J 45:199–210CrossRef
13.
go back to reference Ying H, Yumin D, Yang J, Tang Y, Li J, Wang X (2008) Self-aggregation and antibacterial activity of N-acylated chitosan. Polymer 48:3098–3106 Ying H, Yumin D, Yang J, Tang Y, Li J, Wang X (2008) Self-aggregation and antibacterial activity of N-acylated chitosan. Polymer 48:3098–3106
14.
go back to reference El-Sherbiny IM (2010) Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs, preparation, and in-vitro assessment. Carbohydr Polym 80:1125–1136CrossRef El-Sherbiny IM (2010) Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs, preparation, and in-vitro assessment. Carbohydr Polym 80:1125–1136CrossRef
15.
go back to reference Sarhan AA, Monier M, Ayad DM, Badawy DS (2010) Evaluation of the potential of polymeric carriers based on chitosan grafted polyacrylonitrile in the formulation of drug delivery systems. J Appl Polym Sci 118:1837–1845 Sarhan AA, Monier M, Ayad DM, Badawy DS (2010) Evaluation of the potential of polymeric carriers based on chitosan grafted polyacrylonitrile in the formulation of drug delivery systems. J Appl Polym Sci 118:1837–1845
16.
go back to reference Al-Karawi AJM, Al-Qaisi ZHJ, Abdul-lah HI, Al-Mokara AMA, Ajeel Al-Heetimi DT (2011) Synthesis, characterization of acrylamide grafted chitosan and its use in removal of copper (II) ions from water. Carbohydr Polym 83(2):495–500CrossRef Al-Karawi AJM, Al-Qaisi ZHJ, Abdul-lah HI, Al-Mokara AMA, Ajeel Al-Heetimi DT (2011) Synthesis, characterization of acrylamide grafted chitosan and its use in removal of copper (II) ions from water. Carbohydr Polym 83(2):495–500CrossRef
17.
go back to reference Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, Abd El Latif SM (2010) Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr Polym 79:998–1005CrossRef Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, Abd El Latif SM (2010) Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr Polym 79:998–1005CrossRef
18.
go back to reference Tao S, Xu P, Liu Q, Xue J, Xie W (2003) Graft copolymerization of methacrylic acid onto carboxymethyl chitosan. Eur Polym J 39:189–192CrossRef Tao S, Xu P, Liu Q, Xue J, Xie W (2003) Graft copolymerization of methacrylic acid onto carboxymethyl chitosan. Eur Polym J 39:189–192CrossRef
19.
go back to reference John G, Pillai CKS, Ajayaghosh A (1993) Photo-induced graft copolymerization of methyl methacrylate onto cellulose containing benzoyl xanthate chromophore. Polym Bull 30:415–420CrossRef John G, Pillai CKS, Ajayaghosh A (1993) Photo-induced graft copolymerization of methyl methacrylate onto cellulose containing benzoyl xanthate chromophore. Polym Bull 30:415–420CrossRef
20.
go back to reference Jalal Zohuriaan Mehr M (2005) Advances in chitin and chitosan modification through graft copolymerization a comprehensive review. Iran Polym J 14(3):235–265 Jalal Zohuriaan Mehr M (2005) Advances in chitin and chitosan modification through graft copolymerization a comprehensive review. Iran Polym J 14(3):235–265
21.
go back to reference Yazdani-Pedram M, Lagos A, Retuert J (2002) Study of the effect of reaction variables on grafting of polyacrylamide onto chitosan. Polym Bull 48:93–98CrossRef Yazdani-Pedram M, Lagos A, Retuert J (2002) Study of the effect of reaction variables on grafting of polyacrylamide onto chitosan. Polym Bull 48:93–98CrossRef
22.
go back to reference Omid NJ, Babanejad N, Amini H, Amini M, Tehrani MR, Dorkoosh F (2014) Preparation and characterization of novel derivatives of chitosan and trimethyl chitosan conjugated with dipeptides and vitamin B12 as candidates for oral delivery of insulin. J Polym Res 21:510CrossRef Omid NJ, Babanejad N, Amini H, Amini M, Tehrani MR, Dorkoosh F (2014) Preparation and characterization of novel derivatives of chitosan and trimethyl chitosan conjugated with dipeptides and vitamin B12 as candidates for oral delivery of insulin. J Polym Res 21:510CrossRef
23.
go back to reference Preda N, Enculescu M (2012) Synthesis and characterization of bead-like particles based on chitosan and vinyl polymers. J Polym Res 19:9963CrossRef Preda N, Enculescu M (2012) Synthesis and characterization of bead-like particles based on chitosan and vinyl polymers. J Polym Res 19:9963CrossRef
24.
go back to reference Holme KR, Perlin AS (1997) Chitosan N sulfate a water soluble polyelectrolyte. Carbohydrate 302(1):7–12CrossRef Holme KR, Perlin AS (1997) Chitosan N sulfate a water soluble polyelectrolyte. Carbohydrate 302(1):7–12CrossRef
25.
go back to reference Xue Zhao PD, Qiao Z-Z, He J-X (2010) Preparation of chitosan biguanidine hydrochloride and application in antimicrobial finish of wool fabric. J Eng Fibers Fabr 5:3 Xue Zhao PD, Qiao Z-Z, He J-X (2010) Preparation of chitosan biguanidine hydrochloride and application in antimicrobial finish of wool fabric. J Eng Fibers Fabr 5:3
26.
go back to reference Franklin TJ, Snow GA (1981) Biochemistry of Antimicrobial Action, 3rd edn. Chapman and Hall, London, p 175 Franklin TJ, Snow GA (1981) Biochemistry of Antimicrobial Action, 3rd edn. Chapman and Hall, London, p 175
27.
go back to reference Shi Z (2014) Grafting chitosan oxidized by potassium persulfate onto Nylon 6 fiber, and characterizing the antibacterial property of the graft. J Polym Res 21:534CrossRef Shi Z (2014) Grafting chitosan oxidized by potassium persulfate onto Nylon 6 fiber, and characterizing the antibacterial property of the graft. J Polym Res 21:534CrossRef
28.
go back to reference Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71:235–244CrossRef Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71:235–244CrossRef
29.
go back to reference Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272CrossRef Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272CrossRef
30.
go back to reference Tsai GJ, Su WH (1999) Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot 62:239–243 Tsai GJ, Su WH (1999) Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot 62:239–243
31.
go back to reference Coma V, Martial-Gros A, Garreau S, Copinet A, Deschamps A (2002) Edible antimicrobial films based on chitosan matrix. J Food Sci 67(3):1162–1169CrossRef Coma V, Martial-Gros A, Garreau S, Copinet A, Deschamps A (2002) Edible antimicrobial films based on chitosan matrix. J Food Sci 67(3):1162–1169CrossRef
32.
go back to reference Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175CrossRef Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175CrossRef
33.
go back to reference Brugnerotto J, Desbrières J, Roberts G, Rinaudo M (2001) Characterization of Chitosan by steric exclusion chromatography. Polymer 42:9921–9927CrossRef Brugnerotto J, Desbrières J, Roberts G, Rinaudo M (2001) Characterization of Chitosan by steric exclusion chromatography. Polymer 42:9921–9927CrossRef
34.
go back to reference de Alvarenga ES, de Oliveira CP, Bellato CR (2010) An approach to understanding the deacetylation degree of chitosan. Carbohydr Polym 80:1155–1160CrossRef de Alvarenga ES, de Oliveira CP, Bellato CR (2010) An approach to understanding the deacetylation degree of chitosan. Carbohydr Polym 80:1155–1160CrossRef
35.
go back to reference Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R (2005) Optimal routine conditions for the determination of the degree of acetylation of chitosan by 1H NMR. Carbohydr Polym 61:155–161CrossRef Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R (2005) Optimal routine conditions for the determination of the degree of acetylation of chitosan by 1H NMR. Carbohydr Polym 61:155–161CrossRef
36.
go back to reference Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D, Buschmann MD, Gupta A (2003) A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal 32:1149–1158CrossRef Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D, Buschmann MD, Gupta A (2003) A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal 32:1149–1158CrossRef
37.
go back to reference Varum KM, Anthonsen MW, Grasdalen H, Smidsrod O (1991) Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially Ndeacetylated chitins (chitosans) by high-field n.m.r spectroscopy. Carbohydr Res 211:17–23CrossRef Varum KM, Anthonsen MW, Grasdalen H, Smidsrod O (1991) Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially Ndeacetylated chitins (chitosans) by high-field n.m.r spectroscopy. Carbohydr Res 211:17–23CrossRef
38.
go back to reference Dong Y, Xu C, Wang J, Wang M, Wu Y, Ruan Y (2001) Determination of degree of substitution for Nacylated chitosan using IR spectra. Sci China Ser B: Chem 44(2):216-224 Dong Y, Xu C, Wang J, Wang M, Wu Y, Ruan Y (2001) Determination of degree of substitution for Nacylated chitosan using IR spectra. Sci China Ser B: Chem 44(2):216-224
39.
go back to reference Lavertu M, Darras V, Buschmann MD (2012) Kinetics and efficiency of chitosan reacetylation. Carbohydr Polym 87(2):1192–1198CrossRef Lavertu M, Darras V, Buschmann MD (2012) Kinetics and efficiency of chitosan reacetylation. Carbohydr Polym 87(2):1192–1198CrossRef
40.
go back to reference Kumar S, Koh J (2012) Physiochemical, optical and biological activity of chitosan chromone derivative for biomedical applications. Int J Mol Sci 13:6102–6116CrossRef Kumar S, Koh J (2012) Physiochemical, optical and biological activity of chitosan chromone derivative for biomedical applications. Int J Mol Sci 13:6102–6116CrossRef
Metadata
Title
Novel water-soluble chitosan derivative prepared by graft polymerization of dicyandiamide: synthesis, characterisation, and its antibacterial property
Authors
Esra Suliman Khalil
Bahruddin Saad
El-Sayed Moussa Negim
Muhammad Idiris Saleh
Publication date
01-06-2015
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 6/2015
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0756-9

Other articles of this Issue 6/2015

Journal of Polymer Research 6/2015 Go to the issue

Premium Partners