Skip to main content
Top
Published in: Quantum Information Processing 10/2019

01-10-2019

Numerical and exact analyses of Bures and Hilbert–Schmidt separability and PPT probabilities

Author: Paul B. Slater

Published in: Quantum Information Processing | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We employ a quasirandom methodology, recently developed by Martin Roberts, to estimate the separability probabilities, with respect to the Bures (minimal monotone/statistical distinguishability) measure, of generic two-qubit and two-rebit states. This procedure, based on generalized properties of the golden ratio, yielded, in the course of almost seventeen billion iterations (recorded at intervals of five million), two-qubit estimates repeatedly close to nine decimal places to \(\frac{25}{341} =\frac{5^2}{11 \cdot 31} \approx 0.073313783\). However, despite the use of over twenty-three billion iterations, we do not presently perceive an exact value (rational or otherwise) for an estimate of 0.15709623 for the Bures two-rebit separability probability. The Bures qubit–qutrit case—for which Khvedelidze and Rogojin gave an estimate of 0.0014—is analyzed too. The value of \(\frac{1}{715}=\frac{1}{5 \cdot 11 \cdot 13} \approx 0.00139860\) is a well-fitting value to an estimate of 0.00139884. Interesting values \(\big (\frac{16}{12375} =\frac{4^2}{3^2 \cdot 5^3 \cdot 11}\) and \(\frac{625}{109531136}=\frac{5^4}{2^{12} \cdot 11^2 \cdot 13 \cdot 17}\big )\) are conjectured for the Hilbert–Schmidt (HS) and Bures qubit–qudit (\(2 \times 4\)) positive-partial-transpose (PPT)-probabilities. We re-examine, strongly supporting, conjectures that the HS qubit–qutrit and rebit–retrit separability probabilities are \(\frac{27}{1000}=\frac{3^3}{2^3 \cdot 5^3}\) and \(\frac{860}{6561}= \frac{2^2 \cdot 5 \cdot 43}{3^8}\), respectively. Prior studies have demonstrated that the HS two-rebit separability probability is \(\frac{29}{64}\) and strongly pointed to the HS two-qubit counterpart being \(\frac{8}{33}\) and a certain operator monotone one (other than the Bures) being \(1 -\frac{256}{27 \pi ^2}\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lovas, A., Andai, A.: Invariance of separability probability over reduced states in \(4 \times 4\) bipartite systems. J. Phys. A: Math. Theor. 50, 295303 (2017)MathSciNetCrossRef Lovas, A., Andai, A.: Invariance of separability probability over reduced states in \(4 \times 4\) bipartite systems. J. Phys. A: Math. Theor. 50, 295303 (2017)MathSciNetCrossRef
2.
go back to reference Życzkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A: Math. Gen. 36, 10115 (2003)ADSMathSciNetCrossRef Życzkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A: Math. Gen. 36, 10115 (2003)ADSMathSciNetCrossRef
3.
go back to reference Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)CrossRef Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)CrossRef
5.
go back to reference Slater, P.B.: Master Lovas–Andai and equivalent formulas verifying the \(\frac{8}{33}\) two-qubit Hilbert–Schmidt separability probability and companion rational-valued conjectures. Quantum Inf. Process. 17, 83 (2018)ADSCrossRef Slater, P.B.: Master Lovas–Andai and equivalent formulas verifying the \(\frac{8}{33}\) two-qubit Hilbert–Schmidt separability probability and companion rational-valued conjectures. Quantum Inf. Process. 17, 83 (2018)ADSCrossRef
6.
go back to reference Khvedelidze, A., Rogojin, I.: On the generation of random ensembles of qubits and qutrits: computing separability probabilities for fixed rank states. In: EPJ Web of Conferences (EDP Sciences), vol. 173 (2018)CrossRef Khvedelidze, A., Rogojin, I.: On the generation of random ensembles of qubits and qutrits: computing separability probabilities for fixed rank states. In: EPJ Web of Conferences (EDP Sciences), vol. 173 (2018)CrossRef
9.
go back to reference Shang, J., Seah, Y.-L., Ng, H.K., Nott, D.J., Englert, B.-G.: Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)ADSCrossRef Shang, J., Seah, Y.-L., Ng, H.K., Nott, D.J., Englert, B.-G.: Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)ADSCrossRef
10.
go back to reference Slater, P.B.: A concise formula for generalized two-qubit Hilbert–Schmidt separability probabilities. J. Phys. A: Math. Theor. 46, 445302 (2013)ADSMathSciNetCrossRef Slater, P.B.: A concise formula for generalized two-qubit Hilbert–Schmidt separability probabilities. J. Phys. A: Math. Theor. 46, 445302 (2013)ADSMathSciNetCrossRef
11.
go back to reference Slater, P.B., Dunkl, C.F.: Moment-based evidence for simple rational-valued Hilbert–Schmidt generic 2\(\times 2\) separability probabilities. J. Phys. A: Math. Theor. 45, 095305 (2012)ADSMathSciNetCrossRef Slater, P.B., Dunkl, C.F.: Moment-based evidence for simple rational-valued Hilbert–Schmidt generic 2\(\times 2\) separability probabilities. J. Phys. A: Math. Theor. 45, 095305 (2012)ADSMathSciNetCrossRef
12.
go back to reference Slater, P.B.: Dyson indices and Hilbert–Schmidt separability functions and probabilities. J. Phys. A: Math. Theor. 40, 14279 (2007)ADSMathSciNetCrossRef Slater, P.B.: Dyson indices and Hilbert–Schmidt separability functions and probabilities. J. Phys. A: Math. Theor. 40, 14279 (2007)ADSMathSciNetCrossRef
13.
go back to reference Slater, P.B.: Extensions of generalized two-qubit separability probability analyses to higher dimensions, additional measures and new methodologies. Quantum Inf. Process. (2018b, to appear). arXiv preprint arXiv:1809.09040 Slater, P.B.: Extensions of generalized two-qubit separability probability analyses to higher dimensions, additional measures and new methodologies. Quantum Inf. Process. (2018b, to appear). arXiv preprint arXiv:​1809.​09040
14.
go back to reference Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields, vol. 88. Oxford University Press, Oxford (1995)MATH Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields, vol. 88. Oxford University Press, Oxford (1995)MATH
15.
16.
go back to reference Szarek, S.J., Bengtsson, I., Życzkowski, K.: On the structure of the body of states with positive partial transpose. J. Phys. A: Math. Gen. 39, L119 (2006)ADSMathSciNetCrossRef Szarek, S.J., Bengtsson, I., Życzkowski, K.: On the structure of the body of states with positive partial transpose. J. Phys. A: Math. Gen. 39, L119 (2006)ADSMathSciNetCrossRef
19.
go back to reference Braga, H., Souza, S., Mizrahi, S.S.: Geometrical meaning of two-qubit entanglement and its symmetries. Phys. Rev. A 81, 042310 (2010)ADSCrossRef Braga, H., Souza, S., Mizrahi, S.S.: Geometrical meaning of two-qubit entanglement and its symmetries. Phys. Rev. A 81, 042310 (2010)ADSCrossRef
21.
go back to reference Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)ADSCrossRef Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)ADSCrossRef
22.
go back to reference Aubrun, G., Szarek, S.J.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory, vol. 223. American Mathematical Soc, Providence (2017)CrossRef Aubrun, G., Szarek, S.J.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory, vol. 223. American Mathematical Soc, Providence (2017)CrossRef
23.
go back to reference Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRef Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRef
26.
go back to reference Singh, R., Kunjwal, R., Simon, R.: Relative volume of separable bipartite states. Phys. Rev. A 89, 022308 (2014)ADSCrossRef Singh, R., Kunjwal, R., Simon, R.: Relative volume of separable bipartite states. Phys. Rev. A 89, 022308 (2014)ADSCrossRef
27.
go back to reference Batle, J., Abdel-Aty, M.: Geometric approach to the distribution of quantum states in bipartite physical systems. JOSA B 31, 2540 (2014)ADSCrossRef Batle, J., Abdel-Aty, M.: Geometric approach to the distribution of quantum states in bipartite physical systems. JOSA B 31, 2540 (2014)ADSCrossRef
29.
go back to reference Slater, P.B.: Quantum coin-tossing in a Bayesian Jeffreys framework. Phys. Lett. A 206, 66 (1995)ADSCrossRef Slater, P.B.: Quantum coin-tossing in a Bayesian Jeffreys framework. Phys. Lett. A 206, 66 (1995)ADSCrossRef
30.
go back to reference Kwek, L., Oh, C., Wang, X.-B.: Quantum Jeffreys prior for displaced squeezed thermal states. J. Phys. A: Math. Gen. 32, 6613 (1999)ADSMathSciNetCrossRef Kwek, L., Oh, C., Wang, X.-B.: Quantum Jeffreys prior for displaced squeezed thermal states. J. Phys. A: Math. Gen. 32, 6613 (1999)ADSMathSciNetCrossRef
32.
33.
go back to reference Slater, P.B.: Exact Bures probabilities that two quantum bits are classically correlated. Eur. Phys. J. B-Condens. Matter Complex Syst. 17, 471 (2000)CrossRef Slater, P.B.: Exact Bures probabilities that two quantum bits are classically correlated. Eur. Phys. J. B-Condens. Matter Complex Syst. 17, 471 (2000)CrossRef
35.
go back to reference Šafránek, D.: Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 95, 052320 (2017)ADSCrossRef Šafránek, D.: Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 95, 052320 (2017)ADSCrossRef
36.
37.
39.
go back to reference Dunkl, C.F., Slater, P.B.: Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert–Schmidt and induced measures. Random Matrices Theory Appl. 4, 1550018 (2015)MathSciNetCrossRef Dunkl, C.F., Slater, P.B.: Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert–Schmidt and induced measures. Random Matrices Theory Appl. 4, 1550018 (2015)MathSciNetCrossRef
40.
go back to reference Penson, K.A., Życzkowski, K.: Product of Ginibre matrices: Fus–Catalan and Raney distributions. Phys. Rev. E 83, 061118 (2011)ADSCrossRef Penson, K.A., Życzkowski, K.: Product of Ginibre matrices: Fus–Catalan and Raney distributions. Phys. Rev. E 83, 061118 (2011)ADSCrossRef
41.
go back to reference Al Osipov, V., Sommers, H.-J., Życzkowski, K.: Random Bures mixed states and the distribution of their purity. J. Phys. A: Math. Theor. 43, 055302 (2010)ADSMathSciNetCrossRef Al Osipov, V., Sommers, H.-J., Życzkowski, K.: Random Bures mixed states and the distribution of their purity. J. Phys. A: Math. Theor. 43, 055302 (2010)ADSMathSciNetCrossRef
42.
go back to reference Borot, G., Nadal, C.: Purity distribution for generalized random Bures mixed states. J. Phys. A: Math. Theor. 45, 075209 (2012)ADSMathSciNetCrossRef Borot, G., Nadal, C.: Purity distribution for generalized random Bures mixed states. J. Phys. A: Math. Theor. 45, 075209 (2012)ADSMathSciNetCrossRef
43.
44.
go back to reference Slater, P.B.: Silver mean conjectures for 15-dimensional volumes and 14-dimensional hyperareas of the separable two-qubit systems. J. Geom. Phys. 53, 74 (2005)ADSMathSciNetCrossRef Slater, P.B.: Silver mean conjectures for 15-dimensional volumes and 14-dimensional hyperareas of the separable two-qubit systems. J. Geom. Phys. 53, 74 (2005)ADSMathSciNetCrossRef
45.
go back to reference Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer, Berlin (2014)CrossRef Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer, Berlin (2014)CrossRef
46.
go back to reference Livio, M.: The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number. Broadway Books, New York (2008)MATH Livio, M.: The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number. Broadway Books, New York (2008)MATH
49.
go back to reference Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (1986)CrossRef Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (1986)CrossRef
51.
go back to reference Slater, P.B.: Extended studies of separability functions and probabilities and the relevance of Dyson indices. J. Geom. Phys. 58, 1101 (2008)ADSMathSciNetCrossRef Slater, P.B.: Extended studies of separability functions and probabilities and the relevance of Dyson indices. J. Geom. Phys. 58, 1101 (2008)ADSMathSciNetCrossRef
56.
go back to reference Slater, P.B.: Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states. Quantum Inf. Process. 15, 3745 (2016)ADSMathSciNetCrossRef Slater, P.B.: Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states. Quantum Inf. Process. 15, 3745 (2016)ADSMathSciNetCrossRef
57.
go back to reference Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quant. Inform. Comput. 3(3), 193–202 (2003)MathSciNetMATH Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quant. Inform. Comput. 3(3), 193–202 (2003)MathSciNetMATH
58.
go back to reference Bae, J., Chruściński, D., Hiesmayr, B.C.: Entanglement witness 2.0: Compressed entanglement witnesses. (2018). arXiv preprint arXiv:1811.09896 Bae, J., Chruściński, D., Hiesmayr, B.C.: Entanglement witness 2.0: Compressed entanglement witnesses. (2018). arXiv preprint arXiv:​1811.​09896
59.
go back to reference Gabdulin, A., Mandilara, A.: Investigating bound entangled two-qutrit states via the best separable approximation. (2019). arXiv preprint arXiv:1906.08963 Gabdulin, A., Mandilara, A.: Investigating bound entangled two-qutrit states via the best separable approximation. (2019). arXiv preprint arXiv:​1906.​08963
65.
go back to reference Tilma, T., Byrd, M., Sudarshan, E.: A parametrization of bipartite systems based on SU (4) Euler angles. J. Phys. A: Math. Gen. 35, 10445 (2002)ADSMathSciNetCrossRef Tilma, T., Byrd, M., Sudarshan, E.: A parametrization of bipartite systems based on SU (4) Euler angles. J. Phys. A: Math. Gen. 35, 10445 (2002)ADSMathSciNetCrossRef
66.
67.
go back to reference Maziero, J.: Random sampling of quantum states: a survey of methods. Braz. J. Phys. 45, 575 (2015)ADSCrossRef Maziero, J.: Random sampling of quantum states: a survey of methods. Braz. J. Phys. 45, 575 (2015)ADSCrossRef
69.
go back to reference Smart, S.E., Schuster, D.I., Mazziotti, D.A.: Experimental data from a quantum computer verifies the generalized Pauli exclusion principle. Commun. Phys. 2, 2 (2019)CrossRef Smart, S.E., Schuster, D.I., Mazziotti, D.A.: Experimental data from a quantum computer verifies the generalized Pauli exclusion principle. Commun. Phys. 2, 2 (2019)CrossRef
70.
go back to reference Puchała, Z., Miszczak, J.A.: Probability measure generated by the superfidelity. J. Phys. A: Math. Theor. 44, 405301 (2011)MathSciNetCrossRef Puchała, Z., Miszczak, J.A.: Probability measure generated by the superfidelity. J. Phys. A: Math. Theor. 44, 405301 (2011)MathSciNetCrossRef
71.
go back to reference Zyczkowski, K., Slomczynski, W.: The Monge metric on the sphere and geometry of quantum states. J. Phys. A: Math. Gen. 34, 6689 (2001)ADSMathSciNetCrossRef Zyczkowski, K., Slomczynski, W.: The Monge metric on the sphere and geometry of quantum states. J. Phys. A: Math. Gen. 34, 6689 (2001)ADSMathSciNetCrossRef
72.
73.
go back to reference Rexiti, M., Felice, D., Mancini, S.: The volume of two-qubit states by information geometry. Entropy 20, 146 (2018)ADSCrossRef Rexiti, M., Felice, D., Mancini, S.: The volume of two-qubit states by information geometry. Entropy 20, 146 (2018)ADSCrossRef
Metadata
Title
Numerical and exact analyses of Bures and Hilbert–Schmidt separability and PPT probabilities
Author
Paul B. Slater
Publication date
01-10-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 10/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2431-2

Other articles of this Issue 10/2019

Quantum Information Processing 10/2019 Go to the issue