Skip to main content
Top

2010 | OriginalPaper | Chapter

16. Numerical Dynamo Simulations: From Basic Concepts to Realistic Models

Authors : Johannes Wicht, Stephan Stellmach, Helmut Harder

Published in: Handbook of Geomathematics

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The last years have witnessed an impressive growth in the number and quality of numerical dynamo simulations. The numerical models successfully describe many aspects of the geomagnetic field and also set out to explain the various fields of other planets. The success is somewhat surprising since numerical limitation force dynamo modelers to run their models at unrealistic parameters. In particular the Ekman number, a measure for the relative importance of viscous to Coriolis forces, is many orders of magnitude too large: Earth’s Ekman number is E = 10 − 15 while even today’s most advanced numerical simulations have to content themselves with E = 10 − 6. After giving a brief introduction into the basics of modern dynamo simulations the fundamental force balances are discussed and the question how well the modern models reproduce the geomagnetic field is addressed. First-level properties like the dipole dominance, realistic Elsasser and magnetic Reynolds numbers, and an Earth-like reversal behavior are already captured by larger Ekman number simulations around E = 10 − 3. However, low Ekman numbers are required for modeling torsional oscillations which are thought to be an important part of the decadal geomagnetic field variations. Moreover, only low Ekman number models seem to retain the huge dipole dominance of the geomagnetic field once the Rayleigh number has been increased to values where field reversals happen. These cases also seem to resemble the low-latitude field found at Earth’s core-mantle boundary more closely than larger Ekman numbers cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amit H, Olson P (2006) Time-averaged and time dependent parts of core flow. Phys Earth Planet Inter 155:120–139CrossRef Amit H, Olson P (2006) Time-averaged and time dependent parts of core flow. Phys Earth Planet Inter 155:120–139CrossRef
go back to reference Amit H, Olson P (2008) Geomagnetic dipole tilt changes induced by core flow. Phys Earth Planet Inter 166:226–238CrossRef Amit H, Olson P (2008) Geomagnetic dipole tilt changes induced by core flow. Phys Earth Planet Inter 166:226–238CrossRef
go back to reference Aubert J, Wicht J (2004) Axial versus equatorial dynamo models with implications for planetary magnetic fields. Earth Planet Sci Lett 221: 409–419CrossRef Aubert J, Wicht J (2004) Axial versus equatorial dynamo models with implications for planetary magnetic fields. Earth Planet Sci Lett 221: 409–419CrossRef
go back to reference Aubert J, Amit H, Hulot G (2007) Detecting thermal boundary control in surface flows from numerical dynamos. Phys Earth Planet Inter 160:143–156CrossRef Aubert J, Amit H, Hulot G (2007) Detecting thermal boundary control in surface flows from numerical dynamos. Phys Earth Planet Inter 160:143–156CrossRef
go back to reference Aubert J, Amit H, Hulot G, Olson P (2008a) Thermochemical flows couple the Earths inner core growth to mantle heterogeneity. Nature 454: 758–761CrossRef Aubert J, Amit H, Hulot G, Olson P (2008a) Thermochemical flows couple the Earths inner core growth to mantle heterogeneity. Nature 454: 758–761CrossRef
go back to reference Aubert J, Aurnou J, Wicht J (2008b) The magnetic structure of convection-driven numerical dynamos. Geophys J Int 172:945–956CrossRef Aubert J, Aurnou J, Wicht J (2008b) The magnetic structure of convection-driven numerical dynamos. Geophys J Int 172:945–956CrossRef
go back to reference Bloxham J, Zatman S, Dumberry M (2002) The origin of geomagnetic jerks. Nature 420:65–68CrossRef Bloxham J, Zatman S, Dumberry M (2002) The origin of geomagnetic jerks. Nature 420:65–68CrossRef
go back to reference Braginsky S (1970) Torsional magnetohydrodynamic vibrations in the Earth’s core and variation in day length. Geomag Aeron 10:1–8 Braginsky S (1970) Torsional magnetohydrodynamic vibrations in the Earth’s core and variation in day length. Geomag Aeron 10:1–8
go back to reference Braginsky S, Roberts P (1995) Equations governing convection in Earth’s core and the geodynamo. Geophys Astrophys Fluid Dyn 79: 1–97CrossRef Braginsky S, Roberts P (1995) Equations governing convection in Earth’s core and the geodynamo. Geophys Astrophys Fluid Dyn 79: 1–97CrossRef
go back to reference Breuer M, Wesseling S, Schmalzl J, Hansen U (2002) Effect of inertia in Rayleigh-B’enard convection. Phys Rev E 69:026320/1–10 Breuer M, Wesseling S, Schmalzl J, Hansen U (2002) Effect of inertia in Rayleigh-B’enard convection. Phys Rev E 69:026320/1–10
go back to reference Bullard EC, Gellman H (1954) Homogeneous dynamos and terrestrial magnetism. Proc R Soc Lond A A 247:213–278MATHMathSciNet Bullard EC, Gellman H (1954) Homogeneous dynamos and terrestrial magnetism. Proc R Soc Lond A A 247:213–278MATHMathSciNet
go back to reference Busse FH (2002) Is low Rayleigh number convection possible in the Earth’s core? Geophys Res Lett 29:070000–1CrossRef Busse FH (2002) Is low Rayleigh number convection possible in the Earth’s core? Geophys Res Lett 29:070000–1CrossRef
go back to reference Busse FH, Simitev R (2005a) Convection in rotating spherical shells and its dynamo states. In: Soward AM, Jones CA, Hughes DW, Weiss NO (eds) Fluid dynamics and dynamos in astrophysics and geophysics. CRC Press, Boca Raton, FL, pp 359–392 Busse FH, Simitev R (2005a) Convection in rotating spherical shells and its dynamo states. In: Soward AM, Jones CA, Hughes DW, Weiss NO (eds) Fluid dynamics and dynamos in astrophysics and geophysics. CRC Press, Boca Raton, FL, pp 359–392
go back to reference Busse FH, Simitev R (2005b) Dynamos driven by convection in rotating spherical shells. Atronom Nachr 326: 231–240MATHCrossRef Busse FH, Simitev R (2005b) Dynamos driven by convection in rotating spherical shells. Atronom Nachr 326: 231–240MATHCrossRef
go back to reference Busse FH, Simitev RD (2006) Parameter dependences of convection-driven dynamos in rotating spherical fluid shells. Geophys Astrophys Fluid Dyn 100:341–361MathSciNetCrossRef Busse FH, Simitev RD (2006) Parameter dependences of convection-driven dynamos in rotating spherical fluid shells. Geophys Astrophys Fluid Dyn 100:341–361MathSciNetCrossRef
go back to reference Carlut J, Courtillot V (1998) How complex is the time-averaged geomagnetic field over the past 5 Myr? Geophys J Int 134:527–544CrossRef Carlut J, Courtillot V (1998) How complex is the time-averaged geomagnetic field over the past 5 Myr? Geophys J Int 134:527–544CrossRef
go back to reference Chan K, Li L, Liao X (2006) Modelling the core convection using finite element and finite difference methods. Phys Earth Planet Inter 157:124–138CrossRef Chan K, Li L, Liao X (2006) Modelling the core convection using finite element and finite difference methods. Phys Earth Planet Inter 157:124–138CrossRef
go back to reference Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon, OxfordMATH Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon, OxfordMATH
go back to reference Christensen U, Aubert J (2006) Scaling properties of convection-driven dynamos in rotating spherical shells and applications to planetary magnetic fields. Geophys J Int 116:97–114CrossRef Christensen U, Aubert J (2006) Scaling properties of convection-driven dynamos in rotating spherical shells and applications to planetary magnetic fields. Geophys J Int 116:97–114CrossRef
go back to reference Christensen U, Olson P (2003) Secular variation in numerical geodynamo models with lateral variations of boundary heat flow. Phys Earth Planet Inter 138:39–54CrossRef Christensen U, Olson P (2003) Secular variation in numerical geodynamo models with lateral variations of boundary heat flow. Phys Earth Planet Inter 138:39–54CrossRef
go back to reference Christensen U, Tilgner A (2004) Power requirement of the geodynamo from Ohmic losses in numerical and laboratory dynamos. Nature 429:169—171CrossRef Christensen U, Tilgner A (2004) Power requirement of the geodynamo from Ohmic losses in numerical and laboratory dynamos. Nature 429:169—171CrossRef
go back to reference Christensen U, Wicht J (2007) Numerical dynamo simulations. In: Olson P (ed) Treatise on Geophysics, vol 8 (Core dynamics). Elsevier, New York, pp 245–282CrossRef Christensen U, Wicht J (2007) Numerical dynamo simulations. In: Olson P (ed) Treatise on Geophysics, vol 8 (Core dynamics). Elsevier, New York, pp 245–282CrossRef
go back to reference Christensen UR (2002) Zonal flow driven by strongly supercritical convection in rotating spherical shells. Numerical Dynamo Simulations “Publisher:” Elsevier, New York J Fluid Mech 470:115–133MATH Christensen UR (2002) Zonal flow driven by strongly supercritical convection in rotating spherical shells. Numerical Dynamo Simulations “Publisher:” Elsevier, New York J Fluid Mech 470:115–133MATH
go back to reference Christensen UR (2006) A deep rooted dynamo for Mercury. Nature 444:1056–1058CrossRef Christensen UR (2006) A deep rooted dynamo for Mercury. Nature 444:1056–1058CrossRef
go back to reference Christensen UR (2010) Dynamo Scaling Laws and Applications to the Planets. accepted for publication at Space. Sci Rev Christensen UR (2010) Dynamo Scaling Laws and Applications to the Planets. accepted for publication at Space. Sci Rev
go back to reference Christensen UR, Aubert J, Busse FH et al (2001) A numerical dynamo benchmark. Phys Earth Planet Inter 128:25–34CrossRef Christensen UR, Aubert J, Busse FH et al (2001) A numerical dynamo benchmark. Phys Earth Planet Inter 128:25–34CrossRef
go back to reference Christensen UR, Holzwarth V, Reiners A (2009) Energy flux determines magnetic field strength of planets and stars. Nature 457:167–169CrossRef Christensen UR, Holzwarth V, Reiners A (2009) Energy flux determines magnetic field strength of planets and stars. Nature 457:167–169CrossRef
go back to reference Clement B (2004) Dependency of the duration of geomagnetic polarity reversals on site latitude. Nature 428:637–640CrossRef Clement B (2004) Dependency of the duration of geomagnetic polarity reversals on site latitude. Nature 428:637–640CrossRef
go back to reference Clune T, Eliott J, Miesch M, Toomre J, Glatzmaier G (1999) Computational aspects of a code to study rotating turbulent convection in spherical shells. Parallel Comp 25:361–380MATHCrossRef Clune T, Eliott J, Miesch M, Toomre J, Glatzmaier G (1999) Computational aspects of a code to study rotating turbulent convection in spherical shells. Parallel Comp 25:361–380MATHCrossRef
go back to reference Coe R, Hongre L, Glatzmaier A (2000) An examination of simulated geomagnetic reversals from a paleomagnetic perspective. Phil Trans R Soc Lond A358:1141–1170CrossRef Coe R, Hongre L, Glatzmaier A (2000) An examination of simulated geomagnetic reversals from a paleomagnetic perspective. Phil Trans R Soc Lond A358:1141–1170CrossRef
go back to reference Constable C (2000) On the rate of occurence of geomagnetic reversals. Phys Earth Planet Inter 118:181–193CrossRef Constable C (2000) On the rate of occurence of geomagnetic reversals. Phys Earth Planet Inter 118:181–193CrossRef
go back to reference Dormy E, Cardin P, Jault D (1998) Mhd flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet Sci Lett 158:15–24CrossRef Dormy E, Cardin P, Jault D (1998) Mhd flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet Sci Lett 158:15–24CrossRef
go back to reference Eltayeb I (1972) Hydromagnetic convection in a rapidly rotating fluid layer. Proc R Soc Lond A 326:229–254MATHCrossRef Eltayeb I (1972) Hydromagnetic convection in a rapidly rotating fluid layer. Proc R Soc Lond A 326:229–254MATHCrossRef
go back to reference Eltayeb I (1975) Overstable hydromagnetic convection in a rotating fluid layer. J Fluid Mech 71:161–179MATHCrossRef Eltayeb I (1975) Overstable hydromagnetic convection in a rotating fluid layer. J Fluid Mech 71:161–179MATHCrossRef
go back to reference Fearn D (1979) Thermal and magnetic instabilities in a rapidly rotating fluid sphere. Geophys Astrophys Fluid Dyn 14:103–126MATHCrossRef Fearn D (1979) Thermal and magnetic instabilities in a rapidly rotating fluid sphere. Geophys Astrophys Fluid Dyn 14:103–126MATHCrossRef
go back to reference Fournier A, Bunge H-P, Hollerbach R, Vilotte J-P (2005) A Fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers. J Comp Phys 204:462–489MATHMathSciNetCrossRef Fournier A, Bunge H-P, Hollerbach R, Vilotte J-P (2005) A Fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers. J Comp Phys 204:462–489MATHMathSciNetCrossRef
go back to reference Glatzmaier G (1984) Numerical simulation of stellar convective dynamos. 1. The model and methods. J Comput Phys 55:461–484CrossRef Glatzmaier G (1984) Numerical simulation of stellar convective dynamos. 1. The model and methods. J Comput Phys 55:461–484CrossRef
go back to reference Glatzmaier G (2002) Geodynamo simulations — how realistic are they? Ann Rev Earth Planet Sci 30:237–257CrossRef Glatzmaier G (2002) Geodynamo simulations — how realistic are they? Ann Rev Earth Planet Sci 30:237–257CrossRef
go back to reference Glatzmaier G, Coe R (2007) Magnetic Polarity Reversals in the Core. In: Olson P (ed) Treatise on Geophysics, Vol 8, (Core dynamics). Elsevier, New York, pp 283–297CrossRef Glatzmaier G, Coe R (2007) Magnetic Polarity Reversals in the Core. In: Olson P (ed) Treatise on Geophysics, Vol 8, (Core dynamics). Elsevier, New York, pp 283–297CrossRef
go back to reference Glatzmaier G, Roberts P (1995) A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys Earth Planet Inter 91:63–75CrossRef Glatzmaier G, Roberts P (1995) A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys Earth Planet Inter 91:63–75CrossRef
go back to reference Glatzmaier G, Roberts P (1996) An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Physica D 97:81–94CrossRef Glatzmaier G, Roberts P (1996) An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Physica D 97:81–94CrossRef
go back to reference Glatzmaier G, Coe R, Hongre L, Roberts P (1999) The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401:885–890CrossRef Glatzmaier G, Coe R, Hongre L, Roberts P (1999) The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401:885–890CrossRef
go back to reference Gubbins D (2001) The Rayleigh number for convection in the Earth’s core. Phys Earth Planet Inter 128:3–12CrossRef Gubbins D (2001) The Rayleigh number for convection in the Earth’s core. Phys Earth Planet Inter 128:3–12CrossRef
go back to reference Gubbins D, Kelly P (1993) Persistent patterns in the geomagnetic field over the past 2.5 ma. Nature 365:829–832CrossRef Gubbins D, Kelly P (1993) Persistent patterns in the geomagnetic field over the past 2.5 ma. Nature 365:829–832CrossRef
go back to reference Gubbins D, Love J (1998) Preferred vgp paths during geomagnetic polarity reversals: Symmetry considerations. Geophys Res Lett 25: 1079–1082CrossRef Gubbins D, Love J (1998) Preferred vgp paths during geomagnetic polarity reversals: Symmetry considerations. Geophys Res Lett 25: 1079–1082CrossRef
go back to reference Gubbins D, Willis AP, Sreenivasan B (2007) Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys Earth Planet Inter 162:256–260CrossRef Gubbins D, Willis AP, Sreenivasan B (2007) Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys Earth Planet Inter 162:256–260CrossRef
go back to reference Harder H, Hansen U (2005) A finite-volume solution method for thermal convection and dynamo problems in spherical shells. Geophys J Int 161:522–532CrossRef Harder H, Hansen U (2005) A finite-volume solution method for thermal convection and dynamo problems in spherical shells. Geophys J Int 161:522–532CrossRef
go back to reference Heimpel M, Aurnou J, Wicht J (2005) Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438:193–196CrossRef Heimpel M, Aurnou J, Wicht J (2005) Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438:193–196CrossRef
go back to reference Hejda P, Reshetnyak M (2003) Control volume method for the dynamo problem in the sphere with the free rotating inner core. Stud Geophys Geod 47:147–159CrossRef Hejda P, Reshetnyak M (2003) Control volume method for the dynamo problem in the sphere with the free rotating inner core. Stud Geophys Geod 47:147–159CrossRef
go back to reference Hejda P, Reshetnyak M (2004) Control volume method for the thermal convection problem in a rotating spherical shell: test on the benchmark solution. Stud Geophys Geod, 48, 741–746CrossRef Hejda P, Reshetnyak M (2004) Control volume method for the thermal convection problem in a rotating spherical shell: test on the benchmark solution. Stud Geophys Geod, 48, 741–746CrossRef
go back to reference Hongre L, Hulot G, Khokholov A (1998) An analysis of the geomangetic field over the past 2000 years. Phys Earth Planet Inter 106:311–335CrossRef Hongre L, Hulot G, Khokholov A (1998) An analysis of the geomangetic field over the past 2000 years. Phys Earth Planet Inter 106:311–335CrossRef
go back to reference Hulot G, Bouligand C (2005) Statistical paleomagnetic field modelling and symmetry considerations. Geophys J Int 161, doi:10.1111/j.1365–246X.2005.02612. Hulot G, Bouligand C (2005) Statistical paleomagnetic field modelling and symmetry considerations. Geophys J Int 161, doi:10.1111/j.1365–246X.2005.02612.
go back to reference Hulot G, Finlay C, Constable C, Olsen N, Mandea M (2010) The Magnetic Field of Planet Earth. accepted for publication at Space. Sci Rev Hulot G, Finlay C, Constable C, Olsen N, Mandea M (2010) The Magnetic Field of Planet Earth. accepted for publication at Space. Sci Rev
go back to reference Isakov A, Descombes S, Dormy E (2004) An integro-differential formulation of magnet induction in bounded domains:boundary element-finite volume method. J Comp Phys 197:540–554CrossRef Isakov A, Descombes S, Dormy E (2004) An integro-differential formulation of magnet induction in bounded domains:boundary element-finite volume method. J Comp Phys 197:540–554CrossRef
go back to reference Jackson A (1997) Time dependence of geostrophic core-surface motions. Phys Earth Planet Inter 103:293–311CrossRef Jackson A (1997) Time dependence of geostrophic core-surface motions. Phys Earth Planet Inter 103:293–311CrossRef
go back to reference Jackson A (2003) Intense equatorial flux spots on the surface of the Earth’s core. Nature 424:760–763CrossRef Jackson A (2003) Intense equatorial flux spots on the surface of the Earth’s core. Nature 424:760–763CrossRef
go back to reference Jackson A, Finlay C (2007) Geomagnetic secular variation and applications to the core. In: Kono M (ed) Treatise on geophysics, vol 5, (Geomagnetism). Elsevier, New York, pp 147–193CrossRef Jackson A, Finlay C (2007) Geomagnetic secular variation and applications to the core. In: Kono M (ed) Treatise on geophysics, vol 5, (Geomagnetism). Elsevier, New York, pp 147–193CrossRef
go back to reference Jackson A, Jonkers A, Walker M (2000) Four centuries of geomagnetic secular variation from historical records. Phil Trans R Soc Lond A 358:957–990CrossRef Jackson A, Jonkers A, Walker M (2000) Four centuries of geomagnetic secular variation from historical records. Phil Trans R Soc Lond A 358:957–990CrossRef
go back to reference Jault D (2003) Electromagnetic and topographic coupling, and LOD variations. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor & Francis, London, pp 56–76CrossRef Jault D (2003) Electromagnetic and topographic coupling, and LOD variations. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor & Francis, London, pp 56–76CrossRef
go back to reference Jault D, Gire C, LeMouël J-L (1988) Westward drift, core motion and exchanges of angular momentum between core and mantle. Nature 333:353–356CrossRef Jault D, Gire C, LeMouël J-L (1988) Westward drift, core motion and exchanges of angular momentum between core and mantle. Nature 333:353–356CrossRef
go back to reference Johnson C, Constable C (1995) Time averaged geomagnetic field as recorded by lava flows over the past 5 Myr. Geophys J Int 122:489–519CrossRef Johnson C, Constable C (1995) Time averaged geomagnetic field as recorded by lava flows over the past 5 Myr. Geophys J Int 122:489–519CrossRef
go back to reference Johnson C, Constable C, Tauxe L (2003) Mapping long-term changed in Earth’s magnetic field. Science 300:2044–2045CrossRef Johnson C, Constable C, Tauxe L (2003) Mapping long-term changed in Earth’s magnetic field. Science 300:2044–2045CrossRef
go back to reference Johnson CL, McFadden P (2007) Time-averaged field and paleosecular variation. In: Kono M (ed) Treatise on geophysics, vol 5, (Geomagnetism). Elsevier, New York, pp 217–254 Johnson CL, McFadden P (2007) Time-averaged field and paleosecular variation. In: Kono M (ed) Treatise on geophysics, vol 5, (Geomagnetism). Elsevier, New York, pp 217–254
go back to reference Jones C, Roberts P (2000) The onset of magnetoconvection at large Prandtl number in a rotating layer II. Small magnetic diffusion. Geophys Astrophys Fluid Dyn 93:173–226MathSciNetCrossRef Jones C, Roberts P (2000) The onset of magnetoconvection at large Prandtl number in a rotating layer II. Small magnetic diffusion. Geophys Astrophys Fluid Dyn 93:173–226MathSciNetCrossRef
go back to reference Jonkers A (2003) Long-range dependence in the cenozoic reversal record. Phys Earth Planet Inter 135:253–266CrossRef Jonkers A (2003) Long-range dependence in the cenozoic reversal record. Phys Earth Planet Inter 135:253–266CrossRef
go back to reference Kageyama A, Sato T (1995) Computer simulation of a magnetohydrodynamic dynamo. II. Phys Plasmas 2:1421–1431CrossRef Kageyama A, Sato T (1995) Computer simulation of a magnetohydrodynamic dynamo. II. Phys Plasmas 2:1421–1431CrossRef
go back to reference Kageyama A, Sato T (1997) Generation mechanism of a dipole field by a magnetohydrodynamic dynamo. Phys Rev E 55:4617–4626MathSciNetCrossRef Kageyama A, Sato T (1997) Generation mechanism of a dipole field by a magnetohydrodynamic dynamo. Phys Rev E 55:4617–4626MathSciNetCrossRef
go back to reference Kageyama A, Watanabe K, Sato T (1993) Simulation study of a magnetohydrodynamic dynamo: Convection in a rotating shell. Phys Fluids B 24:2793–2806CrossRef Kageyama A, Watanabe K, Sato T (1993) Simulation study of a magnetohydrodynamic dynamo: Convection in a rotating shell. Phys Fluids B 24:2793–2806CrossRef
go back to reference Kageyama A, Miyagoshi T, Sato T (2008) Formation of current coils in geodynamo simulations. Nature 454:1106–1109CrossRef Kageyama A, Miyagoshi T, Sato T (2008) Formation of current coils in geodynamo simulations. Nature 454:1106–1109CrossRef
go back to reference Kageyama A, Yoshida M (2005) Geodynamo and mantle convection simulations on the earth simulator using the yin-yang grid. J Phys Conf Ser 16:325–338CrossRef Kageyama A, Yoshida M (2005) Geodynamo and mantle convection simulations on the earth simulator using the yin-yang grid. J Phys Conf Ser 16:325–338CrossRef
go back to reference Kaiser R, Schmitt P, Busse F (1994) On the invisible dynamo. Geophys Astrophys Fluid Dyn 77:93–109CrossRef Kaiser R, Schmitt P, Busse F (1994) On the invisible dynamo. Geophys Astrophys Fluid Dyn 77:93–109CrossRef
go back to reference Kelly P, Gubbins D (1997) The geomagnetic field over the past 5 million years. Geophys J Int 128:315–330CrossRef Kelly P, Gubbins D (1997) The geomagnetic field over the past 5 million years. Geophys J Int 128:315–330CrossRef
go back to reference Kono M, Roberts P (2002) Recent geodynamo simulations and observations of the geomagnetic field. Rev Geophys 40:1013, doi:10.1029/2000RG000102CrossRef Kono M, Roberts P (2002) Recent geodynamo simulations and observations of the geomagnetic field. Rev Geophys 40:1013, doi:10.1029/2000RG000102CrossRef
go back to reference Korte M, Constable C (2005) Continuous geomagnetic field models for the past 7 millennia: 2. cals7k. Geochem Geophys Geosys 6, Art No Q02H16 Korte M, Constable C (2005) Continuous geomagnetic field models for the past 7 millennia: 2. cals7k. Geochem Geophys Geosys 6, Art No Q02H16
go back to reference Korte M, Genevey A, Constable C, Frank U, Schnepp E (2005) Continuous geomagnetic field models for the past 7 millennia: 1. a new global data compilation. Geochem Geophys Geosys 6, Art No Q02H15 Korte M, Genevey A, Constable C, Frank U, Schnepp E (2005) Continuous geomagnetic field models for the past 7 millennia: 1. a new global data compilation. Geochem Geophys Geosys 6, Art No Q02H15
go back to reference Kuang W, Bloxham J (1997) An Earth-like numerical dynamo model. Nature 389:371–374CrossRef Kuang W, Bloxham J (1997) An Earth-like numerical dynamo model. Nature 389:371–374CrossRef
go back to reference Kuang W, Bloxham J (1999) Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: weak and strong field dynamo action. J Comp Phys 153:51–81MATHMathSciNetCrossRef Kuang W, Bloxham J (1999) Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: weak and strong field dynamo action. J Comp Phys 153:51–81MATHMathSciNetCrossRef
go back to reference Kutzner C, Christensen U (2000) Effects of driving mechanisms in geodynamo models. Geophys Res Lett 27:29–32CrossRef Kutzner C, Christensen U (2000) Effects of driving mechanisms in geodynamo models. Geophys Res Lett 27:29–32CrossRef
go back to reference Kutzner C, Christensen U (2002) From stable dipolar to reversing numerical dynamos. Phys Earth Planet Inter 131:29–45CrossRef Kutzner C, Christensen U (2002) From stable dipolar to reversing numerical dynamos. Phys Earth Planet Inter 131:29–45CrossRef
go back to reference Kutzner C, Christensen U (2004) Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys J Int 157: 1105–1118CrossRef Kutzner C, Christensen U (2004) Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys J Int 157: 1105–1118CrossRef
go back to reference Matsui H, Buffett B (2005) Sub-grid scale model for convection-driven dynamos in a rotating plane layer. submitted to Elsevier Matsui H, Buffett B (2005) Sub-grid scale model for convection-driven dynamos in a rotating plane layer. submitted to Elsevier
go back to reference Olsen N, Haagmans R, Sabaka TJ et al (2006) The Swarm End-to-End mission simulator study: A demonstration of separating the various contributions to Earth’s magnetic field using synthetic data. Earth Planets Space 58:359–370 Olsen N, Haagmans R, Sabaka TJ et al (2006) The Swarm End-to-End mission simulator study: A demonstration of separating the various contributions to Earth’s magnetic field using synthetic data. Earth Planets Space 58:359–370
go back to reference Olson P, Christensen U (2002) The time-averaged magnetic field in numerical dynamos with nonuniform boundary heat flow. Geophys J Int 151:809–823CrossRef Olson P, Christensen U (2002) The time-averaged magnetic field in numerical dynamos with nonuniform boundary heat flow. Geophys J Int 151:809–823CrossRef
go back to reference Olson P, Christensen U (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250:561–571CrossRef Olson P, Christensen U (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250:561–571CrossRef
go back to reference Olson P, Christensen U, Glatzmaier G (1999) Numerical modeling of the geodynamo: Mechanism of field generation and equilibration. J Geophys Res 104:10,383–10,404 Olson P, Christensen U, Glatzmaier G (1999) Numerical modeling of the geodynamo: Mechanism of field generation and equilibration. J Geophys Res 104:10,383–10,404
go back to reference Roberts P (1972) Kinematic dynamo models. Phil Trans R Soc Lond A 271:663–697 Roberts P (1972) Kinematic dynamo models. Phil Trans R Soc Lond A 271:663–697
go back to reference Roberts P (2007) Theory of the geodynamo. In: Olson P (ed) Treatise on geophysics, vol 8, (Core dynamics). Elsevier, New York, pp 245–282 Roberts P (2007) Theory of the geodynamo. In: Olson P (ed) Treatise on geophysics, vol 8, (Core dynamics). Elsevier, New York, pp 245–282
go back to reference Roberts P, Jones C (2000) The onset of magnetoconvection at large Prandtl number in a rotating layer I. Finite magnetic diffusion. Theory of the Geodynamo Geophs Astrophys Fluid Dyn 92:289–325MathSciNet Roberts P, Jones C (2000) The onset of magnetoconvection at large Prandtl number in a rotating layer I. Finite magnetic diffusion. Theory of the Geodynamo Geophs Astrophys Fluid Dyn 92:289–325MathSciNet
go back to reference Ryan DA, Sarson GR (2007) Are geomagnetic field reversals controlled by turbulence within the Earth’s core? Geophys Res Lett 34:2307CrossRef Ryan DA, Sarson GR (2007) Are geomagnetic field reversals controlled by turbulence within the Earth’s core? Geophys Res Lett 34:2307CrossRef
go back to reference Sakuraba A (2002) Linear magnetoconvection in rotating fluid spheres permeated by a uniform axial magnetic field. Geophys Astrophys Fluid Dyn 96:291–318MathSciNetCrossRef Sakuraba A (2002) Linear magnetoconvection in rotating fluid spheres permeated by a uniform axial magnetic field. Geophys Astrophys Fluid Dyn 96:291–318MathSciNetCrossRef
go back to reference Sakuraba A, Kono M (2000) Effect of a uniform magnetic field on nonlinear magnetocenvection in a rotating fluid spherical shell. Geophys Astrophys Fluid Dyn 92:255–287MathSciNetCrossRef Sakuraba A, Kono M (2000) Effect of a uniform magnetic field on nonlinear magnetocenvection in a rotating fluid spherical shell. Geophys Astrophys Fluid Dyn 92:255–287MathSciNetCrossRef
go back to reference Sakuraba A, Roberts P (2009) Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geosci 2:802–805CrossRef Sakuraba A, Roberts P (2009) Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geosci 2:802–805CrossRef
go back to reference Schmalzl J, Breuer M, Hansen U (2002) The influence of the Prandtl number on the style of vigorous thermal convection. Geophys Astrophys Fluid Dyn 96:381–403CrossRef Schmalzl J, Breuer M, Hansen U (2002) The influence of the Prandtl number on the style of vigorous thermal convection. Geophys Astrophys Fluid Dyn 96:381–403CrossRef
go back to reference Simitev R, Busse F (2005) Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J Fluid Mech 532:365–388MATHMathSciNetCrossRef Simitev R, Busse F (2005) Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J Fluid Mech 532:365–388MATHMathSciNetCrossRef
go back to reference Simitev RD, Busse FH (2009) Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. Europhys Lett 85:19001CrossRef Simitev RD, Busse FH (2009) Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. Europhys Lett 85:19001CrossRef
go back to reference Sreenivasan B, Jones CA (2006) The role of inertia in the evolution of spherical dynamos. Geophys J Int 164:467–476CrossRef Sreenivasan B, Jones CA (2006) The role of inertia in the evolution of spherical dynamos. Geophys J Int 164:467–476CrossRef
go back to reference St Pierre M (1993) The strong-field branch of the childress-soward dynamo. In Proctor MRE et al (eds) Solar and planetary dynamos, pp 329–337 St Pierre M (1993) The strong-field branch of the childress-soward dynamo. In Proctor MRE et al (eds) Solar and planetary dynamos, pp 329–337
go back to reference Stanley S, Bloxham J (2004) Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428: 151–153CrossRef Stanley S, Bloxham J (2004) Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428: 151–153CrossRef
go back to reference Stanley S, Glatzmaier G (2010) Dynamo models for planets other than earth. Space Science Reviews, DOI: 10.1007/s11214-009-9573-y, Only online so far. Stanley S, Glatzmaier G (2010) Dynamo models for planets other than earth. Space Science Reviews, DOI: 10.1007/s11214-009-9573-y, Only online so far.
go back to reference Stanley S, Bloxham J, Hutchison W, Zuber M (2005) Thin shell dynamo models consistent with mercury’s weak observed magnetic field. Earth Planet Sci Lett DOI: 10.1007/s11214-009-9573-y 234:341–353 Stanley S, Bloxham J, Hutchison W, Zuber M (2005) Thin shell dynamo models consistent with mercury’s weak observed magnetic field. Earth Planet Sci Lett DOI: 10.1007/s11214-009-9573-y 234:341–353
go back to reference Stellmach S, Hansen U (2004) Cartesian convection-driven dynamos at low ekman number. Phys Rev E 70:056312CrossRef Stellmach S, Hansen U (2004) Cartesian convection-driven dynamos at low ekman number. Phys Rev E 70:056312CrossRef
go back to reference Stieglitz R, Müller U (2001) Experimental demonstration of the homogeneous two-scale dynamo. Phys Fluids 1:561–564CrossRef Stieglitz R, Müller U (2001) Experimental demonstration of the homogeneous two-scale dynamo. Phys Fluids 1:561–564CrossRef
go back to reference Takahashi F, Matsushima M (2006) Dipolar and non-dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury. Geophys Res Lett 33:L10202CrossRef Takahashi F, Matsushima M (2006) Dipolar and non-dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury. Geophys Res Lett 33:L10202CrossRef
go back to reference Takahashi F, Matsushima M, Honkura Y (2008a) Scale variability in convection-driven MHD dynamos at low Ekman number. Phys Earth Planet Inter 167:168–178CrossRef Takahashi F, Matsushima M, Honkura Y (2008a) Scale variability in convection-driven MHD dynamos at low Ekman number. Phys Earth Planet Inter 167:168–178CrossRef
go back to reference Takahashi F, Tsunakawa H, Matsushima M, Mochizuki N, Honkura Y (2008b) Effects of thermally heterogeneous structure in the lowermost mantle on the geomagnetic field strength. Earth Planet Sci Lett 272:738–746CrossRef Takahashi F, Tsunakawa H, Matsushima M, Mochizuki N, Honkura Y (2008b) Effects of thermally heterogeneous structure in the lowermost mantle on the geomagnetic field strength. Earth Planet Sci Lett 272:738–746CrossRef
go back to reference Taylor J (1963) The magneto-hydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc R Soc Lond A 274:274–283MATHCrossRef Taylor J (1963) The magneto-hydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc R Soc Lond A 274:274–283MATHCrossRef
go back to reference Tilgner A (1996) High-Rayleigh-number convection in spherical shells. Phys Rev E 53:4847–4851CrossRef Tilgner A (1996) High-Rayleigh-number convection in spherical shells. Phys Rev E 53:4847–4851CrossRef
go back to reference Wicht J (2002) Inner-core conductivity in numerical dynamo simulations. Phys Earth Planet Inter 132:281–302CrossRef Wicht J (2002) Inner-core conductivity in numerical dynamo simulations. Phys Earth Planet Inter 132:281–302CrossRef
go back to reference Wicht J (2005) Palaeomagnetic interpretation of dynamo simulations. Geophys J Int 162:371–380CrossRef Wicht J (2005) Palaeomagnetic interpretation of dynamo simulations. Geophys J Int 162:371–380CrossRef
go back to reference Wicht J, Aubert J (2005) Dynamos in action. GWDG-Bericht 68:49–66 Wicht J, Aubert J (2005) Dynamos in action. GWDG-Bericht 68:49–66
go back to reference Wicht J, Christensen U (2010) Taylor state and torsional oscillations in numerical dynamo models. Geophys. J. Int. DOI: 10.1111/j.1365-246x.2010.04581.x, Published online only. Wicht J, Christensen U (2010) Taylor state and torsional oscillations in numerical dynamo models. Geophys. J. Int. DOI: 10.1111/j.1365-246x.2010.04581.x, Published online only.
go back to reference Wicht J, Olson P (2004) A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geochem Geophys Geosyst 5, doi:10.1029/2003GC000602 Wicht J, Olson P (2004) A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geochem Geophys Geosyst 5, doi:10.1029/2003GC000602
go back to reference Wicht J, Mandea M, Takahashi F et al (2007) The Origin of Mercury’s Internal Magnetic Field. Space Sci Rev 132:261–290CrossRef Wicht J, Mandea M, Takahashi F et al (2007) The Origin of Mercury’s Internal Magnetic Field. Space Sci Rev 132:261–290CrossRef
go back to reference Wicht J, Stellmach S, Harder H (2009) Numerical models of the geodynamo: From fundamental Cartesian models to 3d simulations of field reversals. In: Glassmeier K, Soffel H, Negendank J (eds) Geomagnetic field variations – Space–time structure, processes, and effects on system Earth. Springer, Berlin/Heidelberg/New York, pp 107–158 Wicht J, Stellmach S, Harder H (2009) Numerical models of the geodynamo: From fundamental Cartesian models to 3d simulations of field reversals. In: Glassmeier K, Soffel H, Negendank J (eds) Geomagnetic field variations – Space–time structure, processes, and effects on system Earth. Springer, Berlin/Heidelberg/New York, pp 107–158
go back to reference Wicht J, Tilgner A (2010) Theory and modeling of planetary dynamos. Space Science Review, DOI: 10.1007/s11214-010-9638-y, Published online only. Wicht J, Tilgner A (2010) Theory and modeling of planetary dynamos. Space Science Review, DOI: 10.1007/s11214-010-9638-y, Published online only.
go back to reference Willis AP, Sreenivasan B, Gubbins D (2007) Thermal core mantle interaction: Exploring regimes for locked dynamo action. Phys Earth Planet Inter 165:83–92 DOI:10.1007/s11214-010- 9638-yCrossRef Willis AP, Sreenivasan B, Gubbins D (2007) Thermal core mantle interaction: Exploring regimes for locked dynamo action. Phys Earth Planet Inter 165:83–92 DOI:10.1007/s11214-010- 9638-yCrossRef
go back to reference Zatman S, Bloxham J (1997) Torsional oscillations and the magnetic field within the Earth’s core. Nature 388:760–761CrossRef Zatman S, Bloxham J (1997) Torsional oscillations and the magnetic field within the Earth’s core. Nature 388:760–761CrossRef
go back to reference Zhang K, Gubbins D (2000a) Is the geodynamo process intrinsically unstable? Geophys J Int 140:F1–F4CrossRef Zhang K, Gubbins D (2000a) Is the geodynamo process intrinsically unstable? Geophys J Int 140:F1–F4CrossRef
go back to reference Zhang K, Gubbins D (2000b) Scale disparities and magnetohydrodynamics in the Earth’s core. Phil Trans R Soc Lond A 358: 899–920MATHMathSciNetCrossRef Zhang K, Gubbins D (2000b) Scale disparities and magnetohydrodynamics in the Earth’s core. Phil Trans R Soc Lond A 358: 899–920MATHMathSciNetCrossRef
go back to reference Zhang K, Schubert G (2000) Magnetohydrodynamics in rapidly rotating spherical systems. Ann Rev Fluid Mech 32:409–433MathSciNetCrossRef Zhang K, Schubert G (2000) Magnetohydrodynamics in rapidly rotating spherical systems. Ann Rev Fluid Mech 32:409–433MathSciNetCrossRef
go back to reference Zhang K-K, Busse F (1988) Finite amplitude convection and magnetic field generation in in a rotating spherical shell. Geophys Astrophys Fluid Dyn 44:33–53MATHCrossRef Zhang K-K, Busse F (1988) Finite amplitude convection and magnetic field generation in in a rotating spherical shell. Geophys Astrophys Fluid Dyn 44:33–53MATHCrossRef
Metadata
Title
Numerical Dynamo Simulations: From Basic Concepts to Realistic Models
Authors
Johannes Wicht
Stephan Stellmach
Helmut Harder
Copyright Year
2010
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-01546-5_16

Premium Partner