Skip to main content
Top
Published in:
Cover of the book

2016 | OriginalPaper | Chapter

Numerical Homogenization Methods for Parabolic Monotone Problems

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we review various numerical homogenization methods for monotone parabolic problems with multiple scales. The spatial discretisation is based on finite element methods and the multiscale strategy relies on the heterogeneous multiscale method. The time discretization is performed by several classes of Runge-Kutta methods (strongly A-stable or explicit stabilized methods). We discuss the construction and the analysis of such methods for a range of problems, from linear parabolic problems to nonlinear monotone parabolic problems in the very general L p (W 1, p ) setting. We also show that under appropriate assumptions, a computationally attractive linearized method can be constructed for nonlinear problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We concentrate on simplicial elements for simplicity but note that many results presented in this paper can be extended to rectangular elements (see for example [9]).
 
Literature
2.
go back to reference A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4, 447–459 (2005)MathSciNetCrossRefMATH A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4, 447–459 (2005)MathSciNetCrossRefMATH
3.
go back to reference A. Abdulle, The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs, in Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics. GAKUTO International Series. Mathematical Sciences and Applications, vol. 31 (Gakkōtosho, Tokyo, 2009), pp. 133–181 A. Abdulle, The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs, in Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics. GAKUTO International Series. Mathematical Sciences and Applications, vol. 31 (Gakkōtosho, Tokyo, 2009), pp. 133–181
4.
go back to reference A. Abdulle, A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 16, 280–305 (2011)MathSciNetMATH A. Abdulle, A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 16, 280–305 (2011)MathSciNetMATH
5.
go back to reference A. Abdulle, M.E. Huber, Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization. Numer. Methods Partial Differ. Equ. 32 (3), 737–1104 A. Abdulle, M.E. Huber, Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization. Numer. Methods Partial Differ. Equ. 32 (3), 737–1104
7.
8.
go back to reference A. Abdulle, C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces. Multiscale Model. Simul. 3, 195–220 (2005)MathSciNetCrossRefMATH A. Abdulle, C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces. Multiscale Model. Simul. 3, 195–220 (2005)MathSciNetCrossRefMATH
9.
go back to reference A. Abdulle, G. Vilmart, Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis. Math. Models Methods Appl. Sci. 22, 1250002/1–40 (2012)MathSciNetCrossRefMATH A. Abdulle, G. Vilmart, Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis. Math. Models Methods Appl. Sci. 22, 1250002/1–40 (2012)MathSciNetCrossRefMATH
10.
go back to reference A. Abdulle, G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Math. Comput. 83, 513–536 (2014)MathSciNetCrossRefMATH A. Abdulle, G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Math. Comput. 83, 513–536 (2014)MathSciNetCrossRefMATH
11.
go back to reference A. Abdulle, W. E, Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191, 18–39 (2003) A. Abdulle, W. E, Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191, 18–39 (2003)
12.
go back to reference A. Abdulle, Y. Bai, G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems. Int. J. Numer. Methods Eng. 99, 469–486 (2014)MathSciNetCrossRef A. Abdulle, Y. Bai, G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems. Int. J. Numer. Methods Eng. 99, 469–486 (2014)MathSciNetCrossRef
13.
go back to reference A. Abdulle, M.E. Huber, G. Vilmart, Linearized numerical homogenization method for nonlinear monotone parabolic multiscale problems. Multiscale Model. Simul. 13, 916–952 (2015)MathSciNetCrossRefMATH A. Abdulle, M.E. Huber, G. Vilmart, Linearized numerical homogenization method for nonlinear monotone parabolic multiscale problems. Multiscale Model. Simul. 13, 916–952 (2015)MathSciNetCrossRefMATH
14.
15.
go back to reference G. Allaire, R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4, 790–812 (2005) (electronic) G. Allaire, R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4, 790–812 (2005) (electronic)
16.
go back to reference I. Babuška, J.E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)MathSciNetCrossRefMATH I. Babuška, J.E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)MathSciNetCrossRefMATH
17.
18.
go back to reference A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978)MATH A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978)MATH
19.
go back to reference L. Bers, F. John, M. Schechter, Partial differential equations, in Proceedings of the Summer Seminar. Lectures in Applied Mathematics, Boulder, CO (1957) L. Bers, F. John, M. Schechter, Partial differential equations, in Proceedings of the Summer Seminar. Lectures in Applied Mathematics, Boulder, CO (1957)
20.
go back to reference M.E. Brewster, G. Beylkin, A multiresolution strategy for numerical homogenization. Appl. Comput. Harmon. Anal. 2, 327–349 (1995)MathSciNetCrossRefMATH M.E. Brewster, G. Beylkin, A multiresolution strategy for numerical homogenization. Appl. Comput. Harmon. Anal. 2, 327–349 (1995)MathSciNetCrossRefMATH
21.
go back to reference V. Chiadò Piat, G. Dal Maso, A. Defranceschi, G-convergence of monotone operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 123–160 (1990)MathSciNetMATH V. Chiadò Piat, G. Dal Maso, A. Defranceschi, G-convergence of monotone operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 123–160 (1990)MathSciNetMATH
22.
go back to reference P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4 (North-Holland, Amsterdam, 1978) P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4 (North-Holland, Amsterdam, 1978)
23.
go back to reference P.G. Ciarlet, P.A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Academic, New York, 1972), pp. 409–474CrossRef P.G. Ciarlet, P.A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Academic, New York, 1972), pp. 409–474CrossRef
25.
go back to reference M. Crouzeix, S. Larsson, S. Piskarëv, V. Thomée, The stability of rational approximations of analytic semigroups. BIT 33, 74–84 (1993)MathSciNetCrossRefMATH M. Crouzeix, S. Larsson, S. Piskarëv, V. Thomée, The stability of rational approximations of analytic semigroups. BIT 33, 74–84 (1993)MathSciNetCrossRefMATH
26.
go back to reference G. Dal Maso, A. Defranceschi, Correctors for the homogenization of monotone operators. Differ. Integr. Equ. 3, 1151–1166 (1990)MathSciNetMATH G. Dal Maso, A. Defranceschi, Correctors for the homogenization of monotone operators. Differ. Integr. Equ. 3, 1151–1166 (1990)MathSciNetMATH
27.
go back to reference L. Diening, C. Ebmeyer, M. Růžička, Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal. 45, 457–472 (2007) (electronic) L. Diening, C. Ebmeyer, M. Růžička, Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal. 45, 457–472 (2007) (electronic)
28.
go back to reference R. Du, P. Ming, Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 8, 863–885 (2010)MathSciNetCrossRefMATH R. Du, P. Ming, Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 8, 863–885 (2010)MathSciNetCrossRefMATH
29.
go back to reference Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods. Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4 (Springer, New York, 2009) Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods. Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4 (Springer, New York, 2009)
30.
go back to reference Y. Efendiev, A. Pankov, Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2, 237–268 (2004)MathSciNetCrossRefMATH Y. Efendiev, A. Pankov, Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2, 237–268 (2004)MathSciNetCrossRefMATH
31.
go back to reference B. Engquist, O. Runborg, Wavelet-based numerical homogenization with applications, in Multiscale and Multiresolution Methods. Lecture Notes in Computational Science and Engineering, vol. 20 (Springer, Berlin, 2002), pp. 97–148 B. Engquist, O. Runborg, Wavelet-based numerical homogenization with applications, in Multiscale and Multiresolution Methods. Lecture Notes in Computational Science and Engineering, vol. 20 (Springer, Berlin, 2002), pp. 97–148
32.
go back to reference M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)CrossRefMATH M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)CrossRefMATH
33.
go back to reference A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5, 996–1043 (2006) (electronic) A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5, 996–1043 (2006) (electronic)
34.
go back to reference A. Gloria, Reduction of the resonance error. Part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21, 1601–1630 (2011) A. Gloria, Reduction of the resonance error. Part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21, 1601–1630 (2011)
35.
go back to reference E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer, Berlin/Heidelberg, 1996) E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer, Berlin/Heidelberg, 1996)
36.
go back to reference P. Henning, M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete Cont. Dyn. Syst. Ser. S 8, 119–150 (2015)MathSciNetCrossRefMATH P. Henning, M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete Cont. Dyn. Syst. Ser. S 8, 119–150 (2015)MathSciNetCrossRefMATH
37.
go back to reference P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. SIAM Multiscale Model. Simul. 11, 1149–1175 (2013)MathSciNetCrossRefMATH P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. SIAM Multiscale Model. Simul. 11, 1149–1175 (2013)MathSciNetCrossRefMATH
38.
go back to reference T.Y. Hou, X.-H. Wu, Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68, 913–943 (1999)MathSciNetCrossRefMATH T.Y. Hou, X.-H. Wu, Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68, 913–943 (1999)MathSciNetCrossRefMATH
39.
go back to reference T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)MathSciNetCrossRefMATH T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)MathSciNetCrossRefMATH
40.
go back to reference V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin/Heidelberg, 1994)CrossRef V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin/Heidelberg, 1994)CrossRef
42.
go back to reference O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, vol. 49 (Springer, New York, 1985) O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, vol. 49 (Springer, New York, 1985)
43.
go back to reference V. Lebedev, How to solve stiff systems of differential equations by explicit methods, in Numerical Methods and Applications, ed. by G.I. Marčuk (CRC Press, Boca Raton, 1994), pp. 45–80 V. Lebedev, How to solve stiff systems of differential equations by explicit methods, in Numerical Methods and Applications, ed. by G.I. Marčuk (CRC Press, Boca Raton, 1994), pp. 45–80
44.
45.
go back to reference A. Målqvist, A. Persson, Multiscale techniques for parabolic equations (2015). arXiv:1504.08140 A. Målqvist, A. Persson, Multiscale techniques for parabolic equations (2015). arXiv:1504.08140
47.
go back to reference P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comput. 76, 153–177 (2007)MathSciNetCrossRefMATH P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comput. 76, 153–177 (2007)MathSciNetCrossRefMATH
48.
go back to reference G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)MathSciNetCrossRefMATH G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)MathSciNetCrossRefMATH
50.
go back to reference A. Pankov, G -Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications, vol. 422 (Kluwer Academic Publishers, Dordrecht, 1997) A. Pankov, G -Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications, vol. 422 (Kluwer Academic Publishers, Dordrecht, 1997)
51.
go back to reference B.P. Sommeijer, J.G. Verwer, A performance evaluation of a class of Runge-Kutta-Chebyshev methods for solving semi-discrete parabolic differential equations. Tech. rep., Stichting Mathematisch Centrum. Numerieke Wiskunde, Amsterdam, 1980. Report NW91/80 B.P. Sommeijer, J.G. Verwer, A performance evaluation of a class of Runge-Kutta-Chebyshev methods for solving semi-discrete parabolic differential equations. Tech. rep., Stichting Mathematisch Centrum. Numerieke Wiskunde, Amsterdam, 1980. Report NW91/80
53.
go back to reference V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25 (Springer, Berlin, 1997) V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25 (Springer, Berlin, 1997)
54.
go back to reference P. van der Houwen, B.P. Sommeijer, On the internal stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60, 479–485 (1980)MathSciNetCrossRefMATH P. van der Houwen, B.P. Sommeijer, On the internal stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60, 479–485 (1980)MathSciNetCrossRefMATH
55.
go back to reference W. E, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003) W. E, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003)
56.
go back to reference W. E, P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18, 121–156 (2005) W. E, P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18, 121–156 (2005)
57.
go back to reference E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B (Springer, New York, 1990). Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B (Springer, New York, 1990). Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron
Metadata
Title
Numerical Homogenization Methods for Parabolic Monotone Problems
Author
Assyr Abdulle
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41640-3_1

Premium Partner