Skip to main content
Top
Published in: Computational Mechanics 6/2015

01-12-2015 | Original Paper

Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra

Authors: Eric B. Chin, Jean B. Lasserre, N. Sukumar

Published in: Computational Mechanics | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a method for the numerical integration of homogeneous functions over convex and nonconvex polygons and polyhedra. On applying Stokes’s theorem and using the property of homogeneous functions, we show that it suffices to integrate these functions on the boundary facets of the polytope. For homogeneous polynomials, this approach is used to further reduce the integration to just function evaluations at the vertices of the polytope. This results in an exact cubature rule for a homogeneous polynomial f, where the integration points are only the vertices of the polytope and the function f and its partial derivatives are evaluated at these vertices. Numerical integration of homogeneous functions in polar coordinates and on curved domains are also presented. Along with an efficient algorithm for its implementation, we showcase several illustrative examples in two and three dimensions that demonstrate the accuracy of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Algebraic varieties are the extension of algebraic curves to higher dimensions and are defined to be the set of solutions of a system of polynomial equations over real or complex numbers.
 
Literature
1.
go back to reference Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MATHMathSciNet Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MATHMathSciNet
2.
go back to reference Sudhakar Y, Moitinho de Almeida JP, Wall WA (2014) An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J Comput Phys 273:393–415CrossRef Sudhakar Y, Moitinho de Almeida JP, Wall WA (2014) An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J Comput Phys 273:393–415CrossRef
3.
go back to reference Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput Methods Appl Mech Eng 258:39–54MATHMathSciNetCrossRef Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput Methods Appl Mech Eng 258:39–54MATHMathSciNetCrossRef
4.
go back to reference Schillinger D, Reuss M (2015) The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22:391–455MathSciNetCrossRef Schillinger D, Reuss M (2015) The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22:391–455MathSciNetCrossRef
5.
go back to reference Beirao da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23:199–214MATHMathSciNetCrossRef Beirao da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23:199–214MATHMathSciNetCrossRef
6.
go back to reference Mu L, Wang JP, Ye X (2015) A weak Galerkin finite element method with polynomial reduction. J Comput Appl Math 285:45–58MathSciNetCrossRef Mu L, Wang JP, Ye X (2015) A weak Galerkin finite element method with polynomial reduction. J Comput Appl Math 285:45–58MathSciNetCrossRef
7.
go back to reference Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554MATHMathSciNetCrossRef Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554MATHMathSciNetCrossRef
9.
go back to reference Taylor ME (1996) Partial differential equations: basic theory. Springer-Verlag, New YorkCrossRef Taylor ME (1996) Partial differential equations: basic theory. Springer-Verlag, New YorkCrossRef
10.
go back to reference Lasserre JB (1983) An analytical expression and an algorithm for the volume of a convex polyhedron in \({\mathbb{R}}^n\). J Optim Theory Appl 39(3):363–377MATHMathSciNetCrossRef Lasserre JB (1983) An analytical expression and an algorithm for the volume of a convex polyhedron in \({\mathbb{R}}^n\). J Optim Theory Appl 39(3):363–377MATHMathSciNetCrossRef
12.
go back to reference Baldoni V, Berline N, De Loera JA, Dutra B, Köppe M, Moreinis S, Pinto G, Vergne M, Wu J (2014) A User’s Guide for LattE integrale v1.7.2. Department of Mathematics, University of California, Davis, CA 95616, October 2014. Available at http://www.math.ucdavis.edu/latte Baldoni V, Berline N, De Loera JA, Dutra B, Köppe M, Moreinis S, Pinto G, Vergne M, Wu J (2014) A User’s Guide for LattE integrale v1.7.2. Department of Mathematics, University of California, Davis, CA 95616, October 2014. Available at http://​www.​math.​ucdavis.​edu/​latte
13.
go back to reference Baldoni V, Berline N, De Loera JA, Köppe M, Vergne M (2011) How to integrate polynomials over simplices. Math Comput 80:297–325 Baldoni V, Berline N, De Loera JA, Köppe M, Vergne M (2011) How to integrate polynomials over simplices. Math Comput 80:297–325
14.
go back to reference De Loera JA, Dutra B, Köppe M, Moreinis S, Pinto G, Wu J (2013) Software for exact integration of polynomials over polyhedra. Comput Geom 46(3):232–252MATHMathSciNetCrossRef De Loera JA, Dutra B, Köppe M, Moreinis S, Pinto G, Wu J (2013) Software for exact integration of polynomials over polyhedra. Comput Geom 46(3):232–252MATHMathSciNetCrossRef
15.
Metadata
Title
Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra
Authors
Eric B. Chin
Jean B. Lasserre
N. Sukumar
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 6/2015
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1213-7

Other articles of this Issue 6/2015

Computational Mechanics 6/2015 Go to the issue