Skip to main content
Top

2021 | OriginalPaper | Chapter

Numerical Investigation of Three-Dimensional Separation in Twisted Turbine Blade: The Influence of Endwall Boundary Layer State

Authors : Gaurav Saxena, Arun K. Saha, Ritesh Gaur

Published in: Proceedings of the National Aerospace Propulsion Conference

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The substantial adverse pressure gradient experienced by a turbulent boundary layer while approaching an endwall-mounted twisted turbine blade and caused the impending flow to separate three-dimensionally to form a dynamically active horseshoe vortex (HSV) system in the junction of the turbine blade with endwall. The large eddy simulations (LES) of the flow past a twisted turbine blade mounted on a curved endwall with periodic boundary condition in pitchwise direction is carried out for Re = 50000 to methodically investigate the HSV dynamics. The significant variations with Re in terms of mean flow quantities, heat transfer distribution, and coherent dynamics of turbulent HSV are shown in computed results. The HSV system consists of a multiple number of necklace-type vortices that are shed periodically at maximal frequencies. For high Re, we show that outburst of wall govern the instantaneous flow field, averaged vorticity affiliate with the growth of hairpin vortices that enclose around and dislocate the primary HSV. The time-mean endwall heat transfer is prevailed by two bands of high heat transfer which encircle the leading edge of the blade. The band of maximal heat transfer, occurs in the corner region of the juncture, while the secondary high heat transfer band (thin as compare to primary) develops upstream of primary band, in between primary and secondary bands a relatively low heat transfer region is identified.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Devenport WJ, Simpson RL (1990) Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction. J Fluid Mech 210:23CrossRef Devenport WJ, Simpson RL (1990) Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction. J Fluid Mech 210:23CrossRef
2.
go back to reference Chrisohoides A, Sotiropoulos F, Sturm TW (2003) Coherent structures in flat-bed abutment flow: computational fluid dynamics simulations and experiments. J Hydraul Eng 129:177CrossRef Chrisohoides A, Sotiropoulos F, Sturm TW (2003) Coherent structures in flat-bed abutment flow: computational fluid dynamics simulations and experiments. J Hydraul Eng 129:177CrossRef
3.
go back to reference Martinuzzi R, Tropea C (1993) The flow around surface-mounted, prismatic obstables placed in a fully developed channel flow. J Fluids Eng 115:85CrossRef Martinuzzi R, Tropea C (1993) The flow around surface-mounted, prismatic obstables placed in a fully developed channel flow. J Fluids Eng 115:85CrossRef
4.
go back to reference Hussein H, Martinuzzi RJ (1996) Energy balance for turbulent flow around a surface mounted cube placed in a channel. Phys Fluids 8:764CrossRef Hussein H, Martinuzzi RJ (1996) Energy balance for turbulent flow around a surface mounted cube placed in a channel. Phys Fluids 8:764CrossRef
5.
go back to reference Paik J, Sotiropoulos F (2005) Coherent structure dynamics upstream of a long rectangular block at the side of a large aspect ratio channel. Phys Fluids 17:115104CrossRef Paik J, Sotiropoulos F (2005) Coherent structure dynamics upstream of a long rectangular block at the side of a large aspect ratio channel. Phys Fluids 17:115104CrossRef
8.
9.
go back to reference Dargahi B (1989) The turbulent flow field around a circular cylinder. Exp Fluids 8:1CrossRef Dargahi B (1989) The turbulent flow field around a circular cylinder. Exp Fluids 8:1CrossRef
10.
go back to reference Agui JH, Andreopoulos J (1992) Experimental investigation of a three dimensional boundary layer flow in the vicinity of an upright wall mounted cylinder. J Fluids Eng 114:566CrossRef Agui JH, Andreopoulos J (1992) Experimental investigation of a three dimensional boundary layer flow in the vicinity of an upright wall mounted cylinder. J Fluids Eng 114:566CrossRef
11.
go back to reference Seal CV, Smith CR, Rockwell D (1997) Dynamics of the vorticity distribution in endwall junctions. AIAA J 35:1041CrossRef Seal CV, Smith CR, Rockwell D (1997) Dynamics of the vorticity distribution in endwall junctions. AIAA J 35:1041CrossRef
12.
go back to reference Seal CV, Smith CR (1999) Visualization of a mechanism for three-dimensional interaction and near wall eruption. J Fluid Mech 394:193CrossRef Seal CV, Smith CR (1999) Visualization of a mechanism for three-dimensional interaction and near wall eruption. J Fluid Mech 394:193CrossRef
13.
go back to reference Chen CH (1995) Assessment of a Reynolds stress closure model for appendage-hull junction flows. J Fluids Eng 117:557CrossRef Chen CH (1995) Assessment of a Reynolds stress closure model for appendage-hull junction flows. J Fluids Eng 117:557CrossRef
14.
go back to reference Fu S, Rung T, Thiele F, Zhai Z (1997) In: Lesieur M, Launder BE, Binder G, Whitelaw JH (eds), Proceedings of the 11th symposium on turbulent shear flows, Grenoble, France, pp 6.7–6.12 Fu S, Rung T, Thiele F, Zhai Z (1997) In: Lesieur M, Launder BE, Binder G, Whitelaw JH (eds), Proceedings of the 11th symposium on turbulent shear flows, Grenoble, France, pp 6.7–6.12
15.
go back to reference Parneix S, Durbin PA, Behnia, M (1998) Computation of 3-D turbulent boundary layers using the V2F model. Flow Turbul Combust 60:19 Parneix S, Durbin PA, Behnia, M (1998) Computation of 3-D turbulent boundary layers using the V2F model. Flow Turbul Combust 60:19
16.
go back to reference Apsley D, Leschziner M (2001) Investigation of advanced turbulence models for the flow in a generic wing-body junction. Flow Turbul Combust 67:25 Apsley D, Leschziner M (2001) Investigation of advanced turbulence models for the flow in a generic wing-body junction. Flow Turbul Combust 67:25
17.
go back to reference Rodi W (1997) Comparison of LES and RANS calculations of the flow around bluff bodies. J Wind Eng Ind Aerodyn 69:55CrossRef Rodi W (1997) Comparison of LES and RANS calculations of the flow around bluff bodies. J Wind Eng Ind Aerodyn 69:55CrossRef
18.
go back to reference Krajnović´ SC, Davidson L (2002) Large-eddy simulation of the flow around a bluff body. AIAA J 40: 927 Krajnović´ SC, Davidson L (2002) Large-eddy simulation of the flow around a bluff body. AIAA J 40: 927
19.
go back to reference Rodi W, Ferziger J, Breuer M, Pourquié M (1997) Status of large-eddy simulation: results of a workshop. J Fluids Eng 119:248CrossRef Rodi W, Ferziger J, Breuer M, Pourquié M (1997) Status of large-eddy simulation: results of a workshop. J Fluids Eng 119:248CrossRef
20.
go back to reference Shah KB, Ferziger JH (1997) A fluid mechanicians view of wind engineering: large Eddy simulation of flow past a cubic obstacle. J Wind Eng Ind Aerodyn 67:211CrossRef Shah KB, Ferziger JH (1997) A fluid mechanicians view of wind engineering: large Eddy simulation of flow past a cubic obstacle. J Wind Eng Ind Aerodyn 67:211CrossRef
21.
go back to reference Saha AK, Acharya S (2003) Parametric study of unsteady flow and heat transfer in a pin-fin heat exchanger. Int J Heat Mass Transf 46(20):3815CrossRef Saha AK, Acharya S (2003) Parametric study of unsteady flow and heat transfer in a pin-fin heat exchanger. Int J Heat Mass Transf 46(20):3815CrossRef
22.
go back to reference Murata A, Shibata R, Mochizuki,S (1991) Effect of cross-sectional aspect ratio on turbulent heat transfer in an orthogonally rotating rectangular smooth duct. Int J Heat Mass Transf 42:3803 Murata A, Shibata R, Mochizuki,S (1991) Effect of cross-sectional aspect ratio on turbulent heat transfer in an orthogonally rotating rectangular smooth duct. Int J Heat Mass Transf 42:3803
23.
go back to reference Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3(11):2746CrossRef Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3(11):2746CrossRef
24.
go back to reference Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic equations. Mon Weather Rev 91(3):99CrossRef Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic equations. Mon Weather Rev 91(3):99CrossRef
25.
go back to reference Lévêque E, Toschi F, Shao L, Bertoglio JP (2007) Shear-improved smagorinsky model for large-eddy simulation of wall-bounded turbulent flow. J Fluid Mech 570:491MathSciNetCrossRef Lévêque E, Toschi F, Shao L, Bertoglio JP (2007) Shear-improved smagorinsky model for large-eddy simulation of wall-bounded turbulent flow. J Fluid Mech 570:491MathSciNetCrossRef
26.
go back to reference Toschi F, Lévêque E, Ruiz-Chavarria G (2000) Shear effects in nonhomogeneous turbulence. Phys Rev Lett 85:1436CrossRef Toschi F, Lévêque E, Ruiz-Chavarria G (2000) Shear effects in nonhomogeneous turbulence. Phys Rev Lett 85:1436CrossRef
27.
go back to reference Eswaran V, Prakash S (1998) A finite volume method for Navier-Stokes equations. In: Third Asian CFD conference, Vol 1, Bangalore, India Eswaran V, Prakash S (1998) A finite volume method for Navier-Stokes equations. In: Third Asian CFD conference, Vol 1, Bangalore, India
28.
go back to reference Sharma A, Eswaran V (2003) A finite volume method. In: Muralidhar K, Sundararajan T (eds), Computational fluid flow and heat transfer. 2nd ed. Narosa Publishing House, New Delhi. Ch. 12, pp 445 Sharma A, Eswaran V (2003) A finite volume method. In: Muralidhar K, Sundararajan T (eds), Computational fluid flow and heat transfer. 2nd ed. Narosa Publishing House, New Delhi. Ch. 12, pp 445
29.
go back to reference Rhie CM, Chow WL (1983) Numerical study of turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525CrossRef Rhie CM, Chow WL (1983) Numerical study of turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525CrossRef
30.
go back to reference Orlanski I (1976) A simple boundary condition for unbounded flows. J Comput Phys 21:251CrossRef Orlanski I (1976) A simple boundary condition for unbounded flows. J Comput Phys 21:251CrossRef
31.
go back to reference Paik J, Escauriaza C, Sotiropoulos F (2007) On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Phys Fluids 19:045107CrossRef Paik J, Escauriaza C, Sotiropoulos F (2007) On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Phys Fluids 19:045107CrossRef
32.
go back to reference Escauriaza C, Sotiropoulos F (2011) Reynolds number effects on the coherent dynamics of the turbulent horseshoe vortex system. Flow Turbul Combust 86:231CrossRef Escauriaza C, Sotiropoulos F (2011) Reynolds number effects on the coherent dynamics of the turbulent horseshoe vortex system. Flow Turbul Combust 86:231CrossRef
33.
go back to reference Praisner TJ, Smith CR (2005) The dynamics of the horseshoe vortex and associated endwall heat transfer: Part I—Temporal behavior. In: ASME turbo expo. Proceedings of GT69088, vol 899 Praisner TJ, Smith CR (2005) The dynamics of the horseshoe vortex and associated endwall heat transfer: Part I—Temporal behavior. In: ASME turbo expo. Proceedings of GT69088, vol 899
34.
go back to reference Praisner TJ, Smith CR (2006) The dynamics of the horseshoe vortex and associated endwall heat transfer—Part II: time-mean results. J Turbomach 128:755CrossRef Praisner TJ, Smith CR (2006) The dynamics of the horseshoe vortex and associated endwall heat transfer—Part II: time-mean results. J Turbomach 128:755CrossRef
35.
go back to reference Ishii J, Honami S (1986) A three-dimensional turbulent detached flow with a horseshoe vortex. J Eng Gas Turbines Power 108(1):125–130 Ishii J, Honami S (1986) A three-dimensional turbulent detached flow with a horseshoe vortex. J Eng Gas Turbines Power 108(1):125–130
Metadata
Title
Numerical Investigation of Three-Dimensional Separation in Twisted Turbine Blade: The Influence of Endwall Boundary Layer State
Authors
Gaurav Saxena
Arun K. Saha
Ritesh Gaur
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5039-3_8

Premium Partner