Skip to main content
Top

2024 | OriginalPaper | Chapter

Numerical Investigation on Bubble Dynamics Using DOE Approach for Cavitation Machining Process

Authors : Amresh Kumar, Tufan Chandra Bera, B. K. Rout

Published in: Fluid Mechanics and Fluid Power, Volume 5

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The cavitation machining process is non-traditional, gaining importance in the research community due to various advantages such as sustainability, versatility, and clean machining process. The present work examines the effect of various bubble dynamics parameters for cavitation machining. The parameter such as downstream pressure, the density of carrier fluid, initial bubble radius, and initial pressure inside the bubble on output response, i.e. implosion pressure, because the intensity of implosion pressure creates plastic deformation and behaves as a tool to remove material in cavitation machining. In bubble dynamics, the downstream pressure and the density of carrier fluid are controllable factors. The initial radius of the bubble and the initial pressure inside it are considered uncontrollable factors because it varies with time, and the process engineer has little control over these. Three different levels of control factors were planned, and a full factorial design has been considered to analyse the impact on implosion pressure. While simulating the experiments, three sets of uncontrollable factors are chosen to derive the effect of these factors. The analysis of variance (ANOVA) is used to determine the statistically significant controllable factors using the outcomes. The determined implosion pressure is capable of machining most of the engineering materials. The analysis indicates that the downstream pressure is statistically significant, while the fluid density has an insignificant effect on the implosion pressure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Braeutigam P, Wu ZL, Stark A, Ondruschka B (2009) Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem Eng Technol 32:745–753CrossRef Braeutigam P, Wu ZL, Stark A, Ondruschka B (2009) Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem Eng Technol 32:745–753CrossRef
2.
go back to reference Kalumuck KM, Chahine GL (2000) The use of cavitating jets to oxidize organic compounds in water. ASME J Fluids Eng Trans 122:465–470CrossRef Kalumuck KM, Chahine GL (2000) The use of cavitating jets to oxidize organic compounds in water. ASME J Fluids Eng Trans 122:465–470CrossRef
3.
go back to reference Soyama H, Saito K, Saka M (2002) Improvement of fatigue strength of aluminum alloy by cavitation shotless peening. ASME J Eng Mater Technol 124:135–139CrossRef Soyama H, Saito K, Saka M (2002) Improvement of fatigue strength of aluminum alloy by cavitation shotless peening. ASME J Eng Mater Technol 124:135–139CrossRef
4.
go back to reference Klumpp A, Lienert F, Dietrich S, Soyama H, Schulze V (2017) Surface strengthening of AISI4140 by cavitation peening. In; 13th International conference on shot peening (ICSP-13) 18–21 Sept 2017, Montreal, Canada, pp 440–445 Klumpp A, Lienert F, Dietrich S, Soyama H, Schulze V (2017) Surface strengthening of AISI4140 by cavitation peening. In; 13th International conference on shot peening (ICSP-13) 18–21 Sept 2017, Montreal, Canada, pp 440–445
5.
go back to reference Marcon A, Melkote SN, Castle J, Sanders DG, Yoda M (2016) Effect of jet velocity in co-flow water cavitation jet peening. Wear 360–361:38–50CrossRef Marcon A, Melkote SN, Castle J, Sanders DG, Yoda M (2016) Effect of jet velocity in co-flow water cavitation jet peening. Wear 360–361:38–50CrossRef
6.
go back to reference Duraiselvam M, Galun R, Siegmann S, Wesling V, Mordike BL (2006) Liquid impact erosion characteristics of martensitic stainless steel laser clad with Ni-based intermetallic composites and matrix composites. Wear 261:1140–1149 Duraiselvam M, Galun R, Siegmann S, Wesling V, Mordike BL (2006) Liquid impact erosion characteristics of martensitic stainless steel laser clad with Ni-based intermetallic composites and matrix composites. Wear 261:1140–1149
7.
go back to reference Franc JP, Michel JM (2005) Fundamentals of cavitation. Kluwer Academic Publisher, USACrossRef Franc JP, Michel JM (2005) Fundamentals of cavitation. Kluwer Academic Publisher, USACrossRef
8.
go back to reference Cheng F, Ji W (2017) Cavitation erosion of a single bubble in water as a kind of dynamic damage. Proc Inst Mech Eng Part J: J Eng Tribol 231:1383–1389CrossRef Cheng F, Ji W (2017) Cavitation erosion of a single bubble in water as a kind of dynamic damage. Proc Inst Mech Eng Part J: J Eng Tribol 231:1383–1389CrossRef
9.
go back to reference Polishetty A, Shunmugavel M, Goldberg M, Littlefair G, Singh RK (2017) Cutting force and surface finish analysis of machining additive manufactured titanium alloy Ti–6Al–4V. Procedia Manuf 7:284–289CrossRef Polishetty A, Shunmugavel M, Goldberg M, Littlefair G, Singh RK (2017) Cutting force and surface finish analysis of machining additive manufactured titanium alloy Ti–6Al–4V. Procedia Manuf 7:284–289CrossRef
10.
go back to reference Nagalingam AP, Thiruchelvam VC, Yeo SH (2019) A novel hydrodynamic cavitation abrasive technique for internal surface finishing. J Manuf Process 46:44–58CrossRef Nagalingam AP, Thiruchelvam VC, Yeo SH (2019) A novel hydrodynamic cavitation abrasive technique for internal surface finishing. J Manuf Process 46:44–58CrossRef
11.
go back to reference Nagalingam AP, Yuvaraj HK, Santhanam V, Yeo SH (2020) Multiphase hydrodynamic flow finishing for surface integrity enhancement of additive manufactured internal channels. J Mater Process Technol 283:1–21CrossRef Nagalingam AP, Yuvaraj HK, Santhanam V, Yeo SH (2020) Multiphase hydrodynamic flow finishing for surface integrity enhancement of additive manufactured internal channels. J Mater Process Technol 283:1–21CrossRef
12.
go back to reference Dadvand A, Khoo BC, Shervani-Tabar MT, Khalilpourazary S (2012) Boundary element analysis of the droplet dynamics induced by spark-generated bubble. Eng Anal Boundary Elem 36:1595–1603CrossRef Dadvand A, Khoo BC, Shervani-Tabar MT, Khalilpourazary S (2012) Boundary element analysis of the droplet dynamics induced by spark-generated bubble. Eng Anal Boundary Elem 36:1595–1603CrossRef
13.
go back to reference Fu Z, Popov V (2015) The ACA-BEM approach with a binary-key mosaic partitioning for modelling multiple bubble dynamics. Eng Anal Boundary Elem 50:169–179MathSciNetCrossRef Fu Z, Popov V (2015) The ACA-BEM approach with a binary-key mosaic partitioning for modelling multiple bubble dynamics. Eng Anal Boundary Elem 50:169–179MathSciNetCrossRef
14.
go back to reference Qin Z, Bremhorst K, Alehossien H, Meyer T (2007) Simulation of cavitation bubbles in a convergent—divergent nozzle water jet. J Fluid Mech 573:1–25CrossRef Qin Z, Bremhorst K, Alehossien H, Meyer T (2007) Simulation of cavitation bubbles in a convergent—divergent nozzle water jet. J Fluid Mech 573:1–25CrossRef
15.
go back to reference Peng G, Shimizu S, Fujikawa S (2011) Numerical simulation of cavitating water jet by a compressible mixture flow method. J Fluid Sci Technol 6:499–509CrossRef Peng G, Shimizu S, Fujikawa S (2011) Numerical simulation of cavitating water jet by a compressible mixture flow method. J Fluid Sci Technol 6:499–509CrossRef
16.
go back to reference Koukouvinis P, Bergeles G, Gavaises M (2015) A cavitation aggressiveness index within the Reynolds averaged Navier Stokes methodology for cavitating flows. J Hydrodyn 27:579–586 Koukouvinis P, Bergeles G, Gavaises M (2015) A cavitation aggressiveness index within the Reynolds averaged Navier Stokes methodology for cavitating flows. J Hydrodyn 27:579–586
17.
go back to reference Sonde E, Chaise T, Boisson N, Nelias D (2018) Modeling of cavitation peening: jet, bubble growth and collapse, micro-jet and residual stresses. J Mater Process Technol 262:479–491CrossRef Sonde E, Chaise T, Boisson N, Nelias D (2018) Modeling of cavitation peening: jet, bubble growth and collapse, micro-jet and residual stresses. J Mater Process Technol 262:479–491CrossRef
18.
go back to reference Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. The J Acoust Soc Am 68:628–633CrossRef Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. The J Acoust Soc Am 68:628–633CrossRef
19.
go back to reference Brennen C (1969) The dynamic balances of dissolved air and heat in natural cavity flows. J Fluid Mech 37:115–127CrossRef Brennen C (1969) The dynamic balances of dissolved air and heat in natural cavity flows. J Fluid Mech 37:115–127CrossRef
Metadata
Title
Numerical Investigation on Bubble Dynamics Using DOE Approach for Cavitation Machining Process
Authors
Amresh Kumar
Tufan Chandra Bera
B. K. Rout
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6074-3_18

Premium Partners