Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-07-2017 | Original Article | Issue 4/2017

Chinese Journal of Mechanical Engineering 4/2017

Numerical Prediction of Tip Vortex Cavitation for Marine Propellers in Non-uniform Wake

Journal:
Chinese Journal of Mechanical Engineering > Issue 4/2017
Authors:
Zhi-Feng Zhu, Fang Zhou, Dan Li
Important notes
Supported by Anhui Provincial Natural Science Foundation of China (Grant No. 1608085MA05), National Natural Science Foundation of China (Grant No. 51307003 and 61601004).

Abstract

Tip vortex cavitation is the first type of cavitation to take place around most marine propellers. But the numerical prediction of tip vortex cavitation is one of the challenges for propeller wake because of turbulence dissipation during the numerical simulation. Several parameters of computational mesh and numerical algorithm are tested by mean of the predicted length of tip vortex cavtiation to validate a developed method. The predicted length of tip vortex cavtiation is on the increase about 0.4 propeller diameters using the developed numerical method. The predicted length of tip vortex cavtiation by RNG kε model is about 3 times of that by SST kω model. Therefore, based on the validation of the present approach, the cavitating flows generated by two rotating propellers under a non-uniform inflow are calculated further. The distributions of axial velocity, total pressure and vapor volume fraction in the transversal planes across tip vortex region are shown to be useful in analyzing the feature of the cavitating flow. The strongest kernel of tip vortex cavitation is not at the position most close to blade tip but slightly far away from the region. During the growth of tip vortex cavitation extension, it appears short and thick, and then it becomes long and thin. The pressure fluctuations at the positions inside tip vortex region also validates the conclusion. A key finding of the study is that the grids constructed especially for tip vortex flows by using separated computational domain is capable of decreasing the turbulence dissipation and correctly capturing the feature of propeller tip vortex cavitation under uniform and non-uniform inflows. The turbulence model and advanced grids is important to predict tip vortex cavitation.

Please log in to get access to this content

Literature
About this article

Other articles of this Issue 4/2017

Chinese Journal of Mechanical Engineering 4/2017 Go to the issue

Premium Partners

    Image Credits