Skip to main content
Top

2024 | OriginalPaper | Chapter

Numerical Simulation Study on Gravel Packing Parameters of Horizontal Wells in Natural Gas Hydrate Reservoirs

Authors : Junyu Deng, Rui Zhang, Liyong Guan, Hongzhi Xu, Jindong Han, Zizhen Zhang, Tiankui Guo, Weigang Du

Published in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To address the high risk associated with gravel packing operations in horizontal wells located in shallow soft formations of natural gas hydrates in the sea, and the challenges in optimizing process parameters, we developed a numerical model using the CFD-DEM coupling method. This model takes into account the inter-particle and particle-wall interactions of ceramic particles, as well as the transport and settlement laws of the proppant particles in the screen and casing ring. By simulating and visually calculating the macroscopic flow pattern changes of the sand-carrying fluid under different process parameters, we were able to gain insights into the gravel packing process in horizontal wells. The simulation results indicate that in the long horizontal section gravel packing process of shallow soft hydrate reservoirs, using lightweight ceramsite for construction is safer. As the density of ceramsite increases from 1.07 g/cm3 to 1.80 g/cm3, the gravel packing rate decreases from 93.36% to 90.73%. Increasing the viscosity of the sand-carrying liquid is beneficial for gravel packing construction. With an increase in viscosity from 5 mPa·s to 10 mPa·s, the gravel packing rate rises from 93.36% to 94.38%. Controlling the gravel concentration appropriately promotes denser packing. As the gravel concentration increases from 10% to 20%, the gravel packing rate decreases from 93.36% to 90.44%. Pumping at a high displacement is advantageous for improving the packing rate. When the displacement of the sand-carrying liquid decreases from 1.0 m3/min to 0.6 m3/min, the packing rate decreases from 93.36% to 91.09%. The packing effectiveness is most significantly affected by liquid filtration loss. When the filtration loss rate reduces from 30% to 10%, the packing rate decreases from 93.36% to 89.71%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Deng, F., Huang, B., Li, X., et al.: Review of sand control and sand production in a gas hydrate reservoir. Energy Fuels (2022) Deng, F., Huang, B., Li, X., et al.: Review of sand control and sand production in a gas hydrate reservoir. Energy Fuels (2022)
2.
go back to reference Lu, J., Li, D., Liang, D., et al.: An innovative experimental apparatus for the analysis of sand production during natural gas hydrate exploitation. Rev. Sci. Instr. 92(10), 105–110 (2021)CrossRef Lu, J., Li, D., Liang, D., et al.: An innovative experimental apparatus for the analysis of sand production during natural gas hydrate exploitation. Rev. Sci. Instr. 92(10), 105–110 (2021)CrossRef
3.
go back to reference Wu, N., Li, Y., Chen, Q., et al.: Sand production management during marine natural gas hydrate exploitation: review and an innovative solution. Energy Fuels 35(8), 4617–4632 (2021)CrossRef Wu, N., Li, Y., Chen, Q., et al.: Sand production management during marine natural gas hydrate exploitation: review and an innovative solution. Energy Fuels 35(8), 4617–4632 (2021)CrossRef
4.
go back to reference Ye, J., Qin, X., Xie, W., et al.: Main progress of the second gas hydrate trial production in the South China Sea. Geol. China 47(3), 557–568 (2020) Ye, J., Qin, X., Xie, W., et al.: Main progress of the second gas hydrate trial production in the South China Sea. Geol. China 47(3), 557–568 (2020)
5.
go back to reference Dong, C., et al.: Microcosmic retaining mechanism and behavior of screen media with highly argillaceous fine sand from natural gas hydrate reservoir. J. Nat. Gas Sci. Eng. 83, 103618 (2020)CrossRef Dong, C., et al.: Microcosmic retaining mechanism and behavior of screen media with highly argillaceous fine sand from natural gas hydrate reservoir. J. Nat. Gas Sci. Eng. 83, 103618 (2020)CrossRef
6.
go back to reference Bokane, A.B., Jain, S., Deshpande, Y.K., et al.: Transport and distribution of proppant in multistage fractured horizontal wells: a CFD simulation approach. SPE J. 25(5), 63–75 (2013) Bokane, A.B., Jain, S., Deshpande, Y.K., et al.: Transport and distribution of proppant in multistage fractured horizontal wells: a CFD simulation approach. SPE J. 25(5), 63–75 (2013)
7.
go back to reference Zeng, J.S., Li, H., Zhang, D.X.: Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method. J. Nat. Gas Sci. Eng. 33(11), 264–277 (2016)CrossRef Zeng, J.S., Li, H., Zhang, D.X.: Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method. J. Nat. Gas Sci. Eng. 33(11), 264–277 (2016)CrossRef
8.
go back to reference Suri, Y., Islam, S.Z., Hossain, M.: A new CFD approach for proppant transport in unconventional hydraulic fractures. J. Nat. Gas Sci. Eng. 70(1), 102–124 (2019) Suri, Y., Islam, S.Z., Hossain, M.: A new CFD approach for proppant transport in unconventional hydraulic fractures. J. Nat. Gas Sci. Eng. 70(1), 102–124 (2019)
9.
go back to reference Zheng, Y., Wang, H., Yang, B., et al.: CFD-DEM simulation of proppant transport by supercritical CO2 in a vertical planar fracture. J. Nat. Gas Sci. Eng. 84(2), 58–70 (2020) Zheng, Y., Wang, H., Yang, B., et al.: CFD-DEM simulation of proppant transport by supercritical CO2 in a vertical planar fracture. J. Nat. Gas Sci. Eng. 84(2), 58–70 (2020)
10.
go back to reference Zhang, G., Li, M., Gutierrez, M.: Numerical simulation of proppant distribution in hydraulic fractures in horizontal wells. J. Nat. Gas Sci. Eng. 48(10), 157–168 (2017)CrossRef Zhang, G., Li, M., Gutierrez, M.: Numerical simulation of proppant distribution in hydraulic fractures in horizontal wells. J. Nat. Gas Sci. Eng. 48(10), 157–168 (2017)CrossRef
11.
go back to reference Michael, M., Vogel, F., Peters, B.: DEM-FEM coupling simulations of the interactions between a tire tread and granular terrain. Comput. Methods Appl. Mech. Eng. 289(18), 227–248 (2015)MathSciNetCrossRef Michael, M., Vogel, F., Peters, B.: DEM-FEM coupling simulations of the interactions between a tire tread and granular terrain. Comput. Methods Appl. Mech. Eng. 289(18), 227–248 (2015)MathSciNetCrossRef
12.
go back to reference Wang, X., Yao, J., Gong, L., et al.: Numerical simulations of proppant deposition and transport characteristics in hydraulic fractures and fracture networks. J. Petrol. Sci. Eng. 183(9), 106–120 (2019) Wang, X., Yao, J., Gong, L., et al.: Numerical simulations of proppant deposition and transport characteristics in hydraulic fractures and fracture networks. J. Petrol. Sci. Eng. 183(9), 106–120 (2019)
13.
go back to reference Chaudhuri, B., Muzzio, F.J., Tomassone, M.S.: Modeling of heat transfer in granular flow in rotating vessels. Chem. Eng. Sci. 61(19), 6348–6360 (2006)CrossRef Chaudhuri, B., Muzzio, F.J., Tomassone, M.S.: Modeling of heat transfer in granular flow in rotating vessels. Chem. Eng. Sci. 61(19), 6348–6360 (2006)CrossRef
15.
go back to reference Chen, Z.: The Application of Light and Ultra-Light Weight Proppant in Horizontal Well Sand Control: Unified Model and Case Histories. SPE147451 (2012) Chen, Z.: The Application of Light and Ultra-Light Weight Proppant in Horizontal Well Sand Control: Unified Model and Case Histories. SPE147451 (2012)
Metadata
Title
Numerical Simulation Study on Gravel Packing Parameters of Horizontal Wells in Natural Gas Hydrate Reservoirs
Authors
Junyu Deng
Rui Zhang
Liyong Guan
Hongzhi Xu
Jindong Han
Zizhen Zhang
Tiankui Guo
Weigang Du
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_51