Skip to main content
Top

2012 | OriginalPaper | Chapter

4. Numerical Simulations of the Nonhydrostatic Transformation of Basin-Scale Internal Gravity Waves and Wave-Enhanced Meromixis in Lakes

Authors : V. Maderich, I. Brovchenko, K. Terletska, K. Hutter

Published in: Nonlinear Internal Waves in Lakes

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The processes of the transformation of basin-scale internal waves are simulated by a numerical three-dimensional nonhydrostatic model that is applied to a sequence of idealized problems, namely the transformation and degeneration of basin-scale internal waves in a rectangular basin, in a basin with a sloping bottom, in a basin with a sill and a cross-section constriction, and finally in a small, elongated lake. The results of the simulations are compared with laboratory experiments and with field observations, when they are available.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
For brevity, this will be called a “15-diagonal” matrix.
 
Literature
go back to reference Armi L, Farmer DM (1986) Maximal two-layer exchange through a contraction with barotropic net flow. J Fluid Mech 164: 27–51CrossRef Armi L, Farmer DM (1986) Maximal two-layer exchange through a contraction with barotropic net flow. J Fluid Mech 164: 27–51CrossRef
go back to reference Armi L, Riemenschneider U (2008) Two-layer hydraulics for a co-located crest and narrows. J Fluid Mech 615: 169–184CrossRef Armi L, Riemenschneider U (2008) Two-layer hydraulics for a co-located crest and narrows. J Fluid Mech 615: 169–184CrossRef
go back to reference Bergh J, Berntsen J (2009a) Numerical studies of wind forced internal waves with a nonhydrostatic model. Ocean Dynamics 59:1025–1041CrossRef Bergh J, Berntsen J (2009a) Numerical studies of wind forced internal waves with a nonhydrostatic model. Ocean Dynamics 59:1025–1041CrossRef
go back to reference Bergh J, Berntsen J (2009b) The surface boundary condition in nonhydrostatic ocean models. Ocean Dynamics DOI 10.1007/s10236-009-0242-1 Bergh J, Berntsen J (2009b) The surface boundary condition in nonhydrostatic ocean models. Ocean Dynamics DOI 10.1007/s10236-009-0242-1
go back to reference Berntsen J (2000) Users guide for a mode-split σ- coordinate numerical ocean model. Tech. Rep. 135, Dept. of Applied Mathematics, University of Bergen, Bergen, Norway Berntsen J (2000) Users guide for a mode-split σ- coordinate numerical ocean model. Tech. Rep. 135, Dept. of Applied Mathematics, University of Bergen, Bergen, Norway
go back to reference Berntsen J, Furnes G (2005) Internal pressure error in sigma-coordinate ocean models-sensitivity of the growth of the flow to the time stepping method and possible nonhydrostatic effects. Cont Shelf Res 25: 829–848CrossRef Berntsen J, Furnes G (2005) Internal pressure error in sigma-coordinate ocean models-sensitivity of the growth of the flow to the time stepping method and possible nonhydrostatic effects. Cont Shelf Res 25: 829–848CrossRef
go back to reference Berntsen J, Xing J, Alendal G (2006) Assessment of non-hydrostatic ocean models using laboratory scale problems. Cont Shelf Res 26: 1433–1447CrossRef Berntsen J, Xing J, Alendal G (2006) Assessment of non-hydrostatic ocean models using laboratory scale problems. Cont Shelf Res 26: 1433–1447CrossRef
go back to reference Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model, In: Heaps N. (ed) Three-Dimensional Coastal Ocean Models, Am Geoph Union, New York Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model, In: Heaps N. (ed) Three-Dimensional Coastal Ocean Models, Am Geoph Union, New York
go back to reference Boegman L, Ivey GN, Imberger J (2005a) The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr 50: 1620–1637CrossRef Boegman L, Ivey GN, Imberger J (2005a) The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr 50: 1620–1637CrossRef
go back to reference Boegman L, Ivey GN, Imberger J (2005b) The energetics of large-scale internal wave degeneration in lakes. J Fluid Mech 531: 159–180CrossRef Boegman L, Ivey GN, Imberger J (2005b) The energetics of large-scale internal wave degeneration in lakes. J Fluid Mech 531: 159–180CrossRef
go back to reference Bogucki D, Garrett C (1993) A simple model for the shear-induced decay of an internal solitary wave. J Phys Oceanogr 8: 1767–1776CrossRef Bogucki D, Garrett C (1993) A simple model for the shear-induced decay of an internal solitary wave. J Phys Oceanogr 8: 1767–1776CrossRef
go back to reference Bourgault D, Kelley DE (2007) On the reflectance of uniform slopes for normally incident interfacial solitary waves. J Phys Oceanogr 37: 1156–162CrossRef Bourgault D, Kelley DE (2007) On the reflectance of uniform slopes for normally incident interfacial solitary waves. J Phys Oceanogr 37: 1156–162CrossRef
go back to reference Bourgault D, Blokhina MD, Mirshak R, Kelley DE (2007) Evolution of a shoaling internal solitary wavetrain. Geoph Res Letters 34, L03601, doi:10.1029/2006GL028462CrossRef Bourgault D, Blokhina MD, Mirshak R, Kelley DE (2007) Evolution of a shoaling internal solitary wavetrain. Geoph Res Letters 34, L03601, doi:10.1029/2006GL028462CrossRef
go back to reference Brovchenko I, Gorodetska N, Maderich V, Nikishov V, Terletska K (2007) Interaction of internal solitary waves of large amplitude with obstacle. Applied Hydromechanics 9(81): 3-7 Brovchenko I, Gorodetska N, Maderich V, Nikishov V, Terletska K (2007) Interaction of internal solitary waves of large amplitude with obstacle. Applied Hydromechanics 9(81): 3-7
go back to reference Camassa R, Choi W, Michallet H, Rusas P, Sveen JK (2006) On the realm of validity of strongly nonlinear asymptotic approximations for internal waves. J Fluid Mech 549:1–23CrossRef Camassa R, Choi W, Michallet H, Rusas P, Sveen JK (2006) On the realm of validity of strongly nonlinear asymptotic approximations for internal waves. J Fluid Mech 549:1–23CrossRef
go back to reference Casulli V (1999) A semi-implicit finite difference method for non-hydrostatic, free-surface flows. Int J Numer Methods Fluids 30: 425–440CrossRef Casulli V (1999) A semi-implicit finite difference method for non-hydrostatic, free-surface flows. Int J Numer Methods Fluids 30: 425–440CrossRef
go back to reference Casulli V, Stelling G (1998) Numerical simulation of 3D quasi-hydrostatic free-surface flows. J Hydraul Eng 124: 678–686CrossRef Casulli V, Stelling G (1998) Numerical simulation of 3D quasi-hydrostatic free-surface flows. J Hydraul Eng 124: 678–686CrossRef
go back to reference Casulli V, Zanolli P (2002) Semi-implicit numerical modeling of non-hydrostatic free-surface flows for environmental problems. Math Comput Model 36: 1131–1149CrossRef Casulli V, Zanolli P (2002) Semi-implicit numerical modeling of non-hydrostatic free-surface flows for environmental problems. Math Comput Model 36: 1131–1149CrossRef
go back to reference Chen CY (2007) An experimental study of stratified mixing caused by internal solitary waves in a two-layered fluid system over variable seabed topography. Ocean Eng: 34: 1995–2008CrossRef Chen CY (2007) An experimental study of stratified mixing caused by internal solitary waves in a two-layered fluid system over variable seabed topography. Ocean Eng: 34: 1995–2008CrossRef
go back to reference Chen CY, Hsu JRC, Chen HH, Kuo CF, Cheng MH (2007a) Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Eng 34: 157–170CrossRef Chen CY, Hsu JRC, Chen HH, Kuo CF, Cheng MH (2007a) Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Eng 34: 157–170CrossRef
go back to reference Chen CY, Hsu JRC, Cheng MH, Chen HH, Kuo CF (2007b) An investigation on internal solitary waves in a two-layer fluid: Propagation and reflection from steep slopes. Ocean Eng 34: 171–184CrossRef Chen CY, Hsu JRC, Cheng MH, Chen HH, Kuo CF (2007b) An investigation on internal solitary waves in a two-layer fluid: Propagation and reflection from steep slopes. Ocean Eng 34: 171–184CrossRef
go back to reference Chen CY, Hsu JRC, Cheng MH, Chen CW (2008) Experiments on mixing and dissipation in internal solitary waves over variable ridges. Environ Fluid Mech 8(3): 199–215CrossRef Chen CY, Hsu JRC, Cheng MH, Chen CW (2008) Experiments on mixing and dissipation in internal solitary waves over variable ridges. Environ Fluid Mech 8(3): 199–215CrossRef
go back to reference Cheng MH, Hsu JRC, Chen CY, Chen CW (2009) Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope. Environ Fluid Mech 9: 321–340CrossRef Cheng MH, Hsu JRC, Chen CY, Chen CW (2009) Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope. Environ Fluid Mech 9: 321–340CrossRef
go back to reference Choi W, Camassa R (1999) Fully nonlinear internal waves in a two-fluid system. J Fluid Mech 396: 1–36CrossRef Choi W, Camassa R (1999) Fully nonlinear internal waves in a two-fluid system. J Fluid Mech 396: 1–36CrossRef
go back to reference Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22:745–762CrossRef Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22:745–762CrossRef
go back to reference Daily C, Imberger J (2003) Modelling solitons under the hydrostatic and Boussinesq approximations. Int J Num Methods Fluids 43: 231–252CrossRef Daily C, Imberger J (2003) Modelling solitons under the hydrostatic and Boussinesq approximations. Int J Num Methods Fluids 43: 231–252CrossRef
go back to reference Ezer T, Arango H, Schepetkin AF (2002) Developments in terrain-following ocean models: intercomparisons of numerical aspects. Ocean Modelling 4: 249–267CrossRef Ezer T, Arango H, Schepetkin AF (2002) Developments in terrain-following ocean models: intercomparisons of numerical aspects. Ocean Modelling 4: 249–267CrossRef
go back to reference Farmer DM (1978) Observations of long nonlinear internal waves in a lake. J Phys Oceanogr 8: 63–73CrossRef Farmer DM (1978) Observations of long nonlinear internal waves in a lake. J Phys Oceanogr 8: 63–73CrossRef
go back to reference Farmer DM, Armi L (1986) Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J Fluid Mech 164: 53–76CrossRef Farmer DM, Armi L (1986) Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J Fluid Mech 164: 53–76CrossRef
go back to reference Filatov NN (2012, this volume) Field studies of non-linear internal waves in lakes on the globe, Chap. 2. Nonlinear Internal Waves in Lakes. Springer, Heidelberg Filatov NN (2012, this volume) Field studies of non-linear internal waves in lakes on the globe, Chap. 2. Nonlinear Internal Waves in Lakes. Springer, Heidelberg
go back to reference Fletcher CAJ (1991) Computational techniques for fluid dynamics, 2nd Edn, vol 2. Springer-Verlag, BerlinCrossRef Fletcher CAJ (1991) Computational techniques for fluid dynamics, 2nd Edn, vol 2. Springer-Verlag, BerlinCrossRef
go back to reference Fringer OB, Street RL (2003) The dynamics of breaking progressive interfacial waves. J Fluid Mech 494: 319–353CrossRef Fringer OB, Street RL (2003) The dynamics of breaking progressive interfacial waves. J Fluid Mech 494: 319–353CrossRef
go back to reference Fringer OB, Gerritsen M, Street RL (2006) An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modelling 14: 139–173CrossRef Fringer OB, Gerritsen M, Street RL (2006) An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modelling 14: 139–173CrossRef
go back to reference Fructus D, Carr M, Grue J, Jensen A, Davies PA (2009) Shear-induced breaking of large internal solitary waves. J Fluid Mech 620: 1–29CrossRef Fructus D, Carr M, Grue J, Jensen A, Davies PA (2009) Shear-induced breaking of large internal solitary waves. J Fluid Mech 620: 1–29CrossRef
go back to reference Gill AE 1982 Atmosphere–ocean dynamics. Academic Press, London Gill AE 1982 Atmosphere–ocean dynamics. Academic Press, London
go back to reference Gorodetska N, Nikishov V (2012, this vol.) Laboratory modelling on transformation of large amplitude internal waves by topographic obstructions, Chap. 3. Nonlinear Internal Waves in Lakes. Springer, Heidelberg. Gorodetska N, Nikishov V (2012, this vol.) Laboratory modelling on transformation of large amplitude internal waves by topographic obstructions, Chap. 3. Nonlinear Internal Waves in Lakes. Springer, Heidelberg.
go back to reference Grimshaw R, Pelinovsky E, Poloukhina O (2002). Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Processes in Geophysics 9, 221–235CrossRef Grimshaw R, Pelinovsky E, Poloukhina O (2002). Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Processes in Geophysics 9, 221–235CrossRef
go back to reference Grimshaw R, Pelinovsky E, Talipova T (2008) Fission of a weakly nonlinear interfacial solitary wave at a step. Geophys Astrophys Fluid Dyn 102: 179–194CrossRef Grimshaw R, Pelinovsky E, Talipova T (2008) Fission of a weakly nonlinear interfacial solitary wave at a step. Geophys Astrophys Fluid Dyn 102: 179–194CrossRef
go back to reference Grue J, Jensen PO, Rusas P-O, Sveen JK (1999) Properties of large-amplitude internal waves. J Fluid Mech 380: 257–278CrossRef Grue J, Jensen PO, Rusas P-O, Sveen JK (1999) Properties of large-amplitude internal waves. J Fluid Mech 380: 257–278CrossRef
go back to reference Guo Y, Sveen JK, Davies PA, Grue J, Dong P (2004) Modelling the motion of an internal solitary wave over a bottom ridge in a stratified fluid. Env Fluid Mech 4: 415–441CrossRef Guo Y, Sveen JK, Davies PA, Grue J, Dong P (2004) Modelling the motion of an internal solitary wave over a bottom ridge in a stratified fluid. Env Fluid Mech 4: 415–441CrossRef
go back to reference Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8: 2182–2189CrossRef Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8: 2182–2189CrossRef
go back to reference Heggelund Y, Vikebo F, Berntsen J, Furnes G (2004) Hydrostatic and non-hydrostatic studies of gravitational adjustment over a slope. Cont Shelf Res 24: 2133–2148CrossRef Heggelund Y, Vikebo F, Berntsen J, Furnes G (2004) Hydrostatic and non-hydrostatic studies of gravitational adjustment over a slope. Cont Shelf Res 24: 2133–2148CrossRef
go back to reference Helfrich KR 1992 Internal solitary wave breaking and run-up on a uniform slope. J Fluid Mech 243: 133–154CrossRef Helfrich KR 1992 Internal solitary wave breaking and run-up on a uniform slope. J Fluid Mech 243: 133–154CrossRef
go back to reference Helfrich KR, Melville WK (2006) Long nonlinear internal waves. Ann Rev Fluid Mech 38: 395–425CrossRef Helfrich KR, Melville WK (2006) Long nonlinear internal waves. Ann Rev Fluid Mech 38: 395–425CrossRef
go back to reference Hirt C, Nichols B (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comp Physics 39: 201–225CrossRef Hirt C, Nichols B (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comp Physics 39: 201–225CrossRef
go back to reference Horn DA, Redekopp LG, Imberger J, Ivey GN (2000) Internal wave evolution in a space-time varying field. J Fluid Mech 424: 279–301 Horn DA, Redekopp LG, Imberger J, Ivey GN (2000) Internal wave evolution in a space-time varying field. J Fluid Mech 424: 279–301
go back to reference Horn DA, Imberger J, Ivey GN (2001) The degeneration of large-scale interfacial gravity waves in lakes. J Fluid Mech 434: 181–207CrossRef Horn DA, Imberger J, Ivey GN (2001) The degeneration of large-scale interfacial gravity waves in lakes. J Fluid Mech 434: 181–207CrossRef
go back to reference Howard LN (1961) Note on a paper by John W. Miles. J Fluid Mech 10: 509–512CrossRef Howard LN (1961) Note on a paper by John W. Miles. J Fluid Mech 10: 509–512CrossRef
go back to reference Hult E, Troy CD, Koseff JR (2009) The breaking of interfacial waves at a submerged bathymetric ridge. J. Fluid Mech 637: 45–71CrossRef Hult E, Troy CD, Koseff JR (2009) The breaking of interfacial waves at a submerged bathymetric ridge. J. Fluid Mech 637: 45–71CrossRef
go back to reference Hunkins K, Fliegel M (1973) Internal undular surges in Seneca Lake: A natural occurrence of solitons. J Geophys Res 78: 539–548CrossRef Hunkins K, Fliegel M (1973) Internal undular surges in Seneca Lake: A natural occurrence of solitons. J Geophys Res 78: 539–548CrossRef
go back to reference Hüttemann H, Hutter K (2001) Baroclinic solitary water waves in two-layer fluid system with diffusive interface. Exp Fluids 30: 317–326CrossRef Hüttemann H, Hutter K (2001) Baroclinic solitary water waves in two-layer fluid system with diffusive interface. Exp Fluids 30: 317–326CrossRef
go back to reference Hutter K (1983) Hydrodynamics of lakes. Springer–Verlag, Berlin Hutter K (1983) Hydrodynamics of lakes. Springer–Verlag, Berlin
go back to reference Jankowski, JA (1999) A non-hydrostatic model for free surfaces flows. PhD thesis, University of Hannover, Germany Jankowski, JA (1999) A non-hydrostatic model for free surfaces flows. PhD thesis, University of Hannover, Germany
go back to reference Kakutani T, Yamasaki N (1978) Solitary waves on a two-layer fluid. J Phys Soc Japan 45: 674-679CrossRef Kakutani T, Yamasaki N (1978) Solitary waves on a two-layer fluid. J Phys Soc Japan 45: 674-679CrossRef
go back to reference Kanarska Y, Maderich V (2003) A non-hydrostatic numerical model for calculating free-surface stratified flows. Ocean Dynamics 53: 176–185CrossRef Kanarska Y, Maderich V (2003) A non-hydrostatic numerical model for calculating free-surface stratified flows. Ocean Dynamics 53: 176–185CrossRef
go back to reference Kanarska Y, Maderich V (2004) Strongly non-linear waves and gravitational currents in rectangular basin. Applied Hydromechanics, 6(78) No 2: 75–78 Kanarska Y, Maderich V (2004) Strongly non-linear waves and gravitational currents in rectangular basin. Applied Hydromechanics, 6(78) No 2: 75–78
go back to reference Kanarska Y, Shchepetkin A, McWilliams JC (2007) Algorithm for non-hydrostatic dynamics in the Regional Oceanic Modeling System. Ocean Modelling 18: 143–174CrossRef Kanarska Y, Shchepetkin A, McWilliams JC (2007) Algorithm for non-hydrostatic dynamics in the Regional Oceanic Modeling System. Ocean Modelling 18: 143–174CrossRef
go back to reference Kao TW, Pan FS, Renouard D (1985) Internal solitons in the pycnocline: Generation, propagation, and shoaling and breaking over a slope. J Fluid Mech 159: 19–53CrossRef Kao TW, Pan FS, Renouard D (1985) Internal solitons in the pycnocline: Generation, propagation, and shoaling and breaking over a slope. J Fluid Mech 159: 19–53CrossRef
go back to reference Keilegavlen E, Berntsen J (2009) Non-hydrostatic pressure in σ-coordinate ocean models. Ocean Modelling 28: 240–249CrossRef Keilegavlen E, Berntsen J (2009) Non-hydrostatic pressure in σ-coordinate ocean models. Ocean Modelling 28: 240–249CrossRef
go back to reference Keulegan GH (1959) Energy dissipation in standing waves in rectangular basins. J Fluid Mech 6: 33–50CrossRef Keulegan GH (1959) Energy dissipation in standing waves in rectangular basins. J Fluid Mech 6: 33–50CrossRef
go back to reference Klymak JM and Moum J (2003) Internal solitary waves of elevation advancing on a shoaling shelf. Geophys Res Let doi:10.1029/2003GL017706 Klymak JM and Moum J (2003) Internal solitary waves of elevation advancing on a shoaling shelf. Geophys Res Let doi:10.1029/2003GL017706
go back to reference Kocsis O, Mathis B, Gloor M, Schurter M, Wüest A (1998) Enhanced mixing in narrows: A case study at the Mainau sill (Lake Constance). Aquat Sci 60: 236–252CrossRef Kocsis O, Mathis B, Gloor M, Schurter M, Wüest A (1998) Enhanced mixing in narrows: A case study at the Mainau sill (Lake Constance). Aquat Sci 60: 236–252CrossRef
go back to reference Koop CG, Butler G (1981) An investigation of internal solitary waves in a two-fluid system. J Fluid Mech 112: 225–251CrossRef Koop CG, Butler G (1981) An investigation of internal solitary waves in a two-fluid system. J Fluid Mech 112: 225–251CrossRef
go back to reference Lamb KG (1994) Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J Geophys Res 99: 843–864CrossRef Lamb KG (1994) Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J Geophys Res 99: 843–864CrossRef
go back to reference Lamb KG (2007) Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Cont Shelf Res 27: 1208–1232CrossRef Lamb KG (2007) Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Cont Shelf Res 27: 1208–1232CrossRef
go back to reference Lamb KG, Nguyen VT (2009) On calculating energy flux in internal solitary waves with an application to reflectance. J Phys Oceanogr 39: 559–580CrossRef Lamb KG, Nguyen VT (2009) On calculating energy flux in internal solitary waves with an application to reflectance. J Phys Oceanogr 39: 559–580CrossRef
go back to reference Leone C, Segur H, Hammack JL (1982) Viscous decay of long internal solitary waves. Phys Fluids 25: 942–244CrossRef Leone C, Segur H, Hammack JL (1982) Viscous decay of long internal solitary waves. Phys Fluids 25: 942–244CrossRef
go back to reference Maderich V, Heling R, Bezhenar R, Brovchenko I, Jenner H, Koshebutskyy V, Kuschan A, Terletska K, (2008) Development and application of 3D numerical model THREETOX to the prediction of cooling water transport and mixing in the inland and coastal waters. Hydrological Processes 22: 1000–1013CrossRef Maderich V, Heling R, Bezhenar R, Brovchenko I, Jenner H, Koshebutskyy V, Kuschan A, Terletska K, (2008) Development and application of 3D numerical model THREETOX to the prediction of cooling water transport and mixing in the inland and coastal waters. Hydrological Processes 22: 1000–1013CrossRef
go back to reference Maderich V, Grimshaw R, Talipova T, Pelinovsky E, Choi B, Brovenchko I, Terletska K, Kim D (2009) The transformation of an interfacial solitary wave of elevation at a bottom step. Nonlinear Processes in Geophysics 16: 1–10CrossRef Maderich V, Grimshaw R, Talipova T, Pelinovsky E, Choi B, Brovenchko I, Terletska K, Kim D (2009) The transformation of an interfacial solitary wave of elevation at a bottom step. Nonlinear Processes in Geophysics 16: 1–10CrossRef
go back to reference Maderich V, Talipova T, Grimshaw R, Brovenchko I, Terletska K, Pelinovsky E, Choi B (2010) Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. Phys Fluids. doi:10.1063/1.3455984 Maderich V, Talipova T, Grimshaw R, Brovenchko I, Terletska K, Pelinovsky E, Choi B (2010) Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. Phys Fluids. doi:10.1063/1.3455984
go back to reference Mahadevan A, Oliger J, Street R, (1996a) A nonhydrostatic mesoscale ocean model. Part I: Implementation and scaling. J Phys Oceanogr 26: 1860–1879 Mahadevan A, Oliger J, Street R, (1996a) A nonhydrostatic mesoscale ocean model. Part I: Implementation and scaling. J Phys Oceanogr 26: 1860–1879
go back to reference Mahadevan A, Oliger J, Street R (1996b) A nonhydrostatic mesoscale ocean model. Part II: Numerical implementation. J Phys Oceanogr 26: 1880–1900 Mahadevan A, Oliger J, Street R (1996b) A nonhydrostatic mesoscale ocean model. Part II: Numerical implementation. J Phys Oceanogr 26: 1880–1900
go back to reference Marshall J, Hill C, Perelman L, Adcroft A (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102: 5733–5752CrossRef Marshall J, Hill C, Perelman L, Adcroft A (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102: 5733–5752CrossRef
go back to reference Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997b) A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J Geophys Res 102: 5753–5766CrossRef Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997b) A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J Geophys Res 102: 5753–5766CrossRef
go back to reference Maurer J, Hutter K, Diebels S. (1996) Viscous effects in internal waves of two-layered fluids with variable depth. Eur J Mech, B/Fluids 15: 445–470 Maurer J, Hutter K, Diebels S. (1996) Viscous effects in internal waves of two-layered fluids with variable depth. Eur J Mech, B/Fluids 15: 445–470
go back to reference Mellor GL (1991) An equation of state for numerical models of ocean and estuaries. J Atmos Ocean Tech 8: 609–611CrossRef Mellor GL (1991) An equation of state for numerical models of ocean and estuaries. J Atmos Ocean Tech 8: 609–611CrossRef
go back to reference Mellor G (2004) Users guide for a three-dimensional, primitive equation, numerical ocean model. Tech. rep. Princeton University, Princeton Mellor G (2004) Users guide for a three-dimensional, primitive equation, numerical ocean model. Tech. rep. Princeton University, Princeton
go back to reference Mellor GL, Hakkinen S, Ezer T, Patchen R. (2002) A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinardi N, Woods JD (eds.), Ocean Forecasting: Conceptual Basis and Applications, Springer, Berlin Mellor GL, Hakkinen S, Ezer T, Patchen R. (2002) A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinardi N, Woods JD (eds.), Ocean Forecasting: Conceptual Basis and Applications, Springer, Berlin
go back to reference Michallet H, Ivey GN (1999) Experiments on mixing due to internal solitary waves breaking on uniform slopes. J Geophys Res 104: 13467–13477CrossRef Michallet H, Ivey GN (1999) Experiments on mixing due to internal solitary waves breaking on uniform slopes. J Geophys Res 104: 13467–13477CrossRef
go back to reference Miles JW (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10: 496–508CrossRef Miles JW (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10: 496–508CrossRef
go back to reference Miles JW, Howard LN (1964) Note on a heterogeneous shear flow. J Fluid Mech 20: 331–336CrossRef Miles JW, Howard LN (1964) Note on a heterogeneous shear flow. J Fluid Mech 20: 331–336CrossRef
go back to reference Miyata, M. 1984. An internal solitary wave of large amplitude. La Mer 23, 43–48 Miyata, M. 1984. An internal solitary wave of large amplitude. La Mer 23, 43–48
go back to reference Moum JN, Farmer DM, Smyth WD, Armi L, Vagle S (2003) Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J Phys Oceanogr 33: 2093–2112CrossRef Moum JN, Farmer DM, Smyth WD, Armi L, Vagle S (2003) Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J Phys Oceanogr 33: 2093–2112CrossRef
go back to reference Münnich M (1996) The influence of bottom topography on internal seiches in stratified media. Dyn Atmos Ocean 23: 257–266CrossRef Münnich M (1996) The influence of bottom topography on internal seiches in stratified media. Dyn Atmos Ocean 23: 257–266CrossRef
go back to reference Orr MH, Mignerey PC (2003) Nonlinear internal waves in the South China Sea: observation of the conversion of depression internal waves to elevation internal waves. J Geophys Res. doi:10.1029/2001JC001163 Orr MH, Mignerey PC (2003) Nonlinear internal waves in the South China Sea: observation of the conversion of depression internal waves to elevation internal waves. J Geophys Res. doi:10.1029/2001JC001163
go back to reference Ostrovsky LA, Stepanyants YA (1989). Do internal solitons exist in the ocean? Rev Geophys 27: 293–310CrossRef Ostrovsky LA, Stepanyants YA (1989). Do internal solitons exist in the ocean? Rev Geophys 27: 293–310CrossRef
go back to reference Ostrovsky LA, Stepanyants YA. (2005) Internal solitons in laboratory experiments: Comparison with theoretical models. Chaos, doi: 10.1063/1.2107087 Ostrovsky LA, Stepanyants YA. (2005) Internal solitons in laboratory experiments: Comparison with theoretical models. Chaos, doi: 10.1063/1.2107087
go back to reference Sabinin KD (1992) Internal wave train above the Mascarene Ridge. Izvestiya, Atmos Ocean Phys 28:625–633 Sabinin KD (1992) Internal wave train above the Mascarene Ridge. Izvestiya, Atmos Ocean Phys 28:625–633
go back to reference Seager V (1988) A SLAP for the masses. LLNL Tech Rep. UCRL-100267, Livermore, CA. Seager V (1988) A SLAP for the masses. LLNL Tech Rep. UCRL-100267, Livermore, CA.
go back to reference Shchepetkin AF, McWilliams JC (2005) The Regional Ocean Modeling System: A split-explicit, free-surface, topography-following coordinate oceanic model. Ocean Modelling 9: 347–404CrossRef Shchepetkin AF, McWilliams JC (2005) The Regional Ocean Modeling System: A split-explicit, free-surface, topography-following coordinate oceanic model. Ocean Modelling 9: 347–404CrossRef
go back to reference Shepherd TG (1993) A unified theory of available potential-energy. Atmos - Ocean 31: 1–26CrossRef Shepherd TG (1993) A unified theory of available potential-energy. Atmos - Ocean 31: 1–26CrossRef
go back to reference Shroyer EL, Moum JN, Nash JD (2008) Observations of polarity reversal in shoaling nonlinear internal waves. J Phys Oceanogr 39: 691–701CrossRef Shroyer EL, Moum JN, Nash JD (2008) Observations of polarity reversal in shoaling nonlinear internal waves. J Phys Oceanogr 39: 691–701CrossRef
go back to reference Siegel DA, Domaradzki JA (1994) Large-eddy simulation of decaying stably stratified turbulence. J Phys Oceanogr 24: 2353–2386CrossRef Siegel DA, Domaradzki JA (1994) Large-eddy simulation of decaying stably stratified turbulence. J Phys Oceanogr 24: 2353–2386CrossRef
go back to reference Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91: 99–164CrossRef Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91: 99–164CrossRef
go back to reference Staschuk N, Vlasenko V, Hutter K (2005) Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water. Nonlinear Proc Geoph 12: 955–964CrossRef Staschuk N, Vlasenko V, Hutter K (2005) Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water. Nonlinear Proc Geoph 12: 955–964CrossRef
go back to reference Stocker T, Hutter K (1987) Topographic waves in channels and lakes on the f-plane. Springer, Berlin.CrossRef Stocker T, Hutter K (1987) Topographic waves in channels and lakes on the f-plane. Springer, Berlin.CrossRef
go back to reference Sveen JK, Davies PA, Grue J (2002) On the breaking of internal solitary waves at a ridge. J Fluid Mech 469: 161–188CrossRef Sveen JK, Davies PA, Grue J (2002) On the breaking of internal solitary waves at a ridge. J Fluid Mech 469: 161–188CrossRef
go back to reference Thorpe SA (1974) Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness? J Fluid Mech 63: 509–527.CrossRef Thorpe SA (1974) Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness? J Fluid Mech 63: 509–527.CrossRef
go back to reference Thorpe SA (1977) Turbulence and mixing in a Scottish loch. Phil Trans R Soc Lond A 286: 125–181CrossRef Thorpe SA (1977) Turbulence and mixing in a Scottish loch. Phil Trans R Soc Lond A 286: 125–181CrossRef
go back to reference Thorpe SA, Hall A, Crofts I (1972) The internal surge in Loch Ness. Nature 237: 96–98.CrossRef Thorpe SA, Hall A, Crofts I (1972) The internal surge in Loch Ness. Nature 237: 96–98.CrossRef
go back to reference Thorpe SA (1997) On the interaction of internal waves reflecting from slopes. J Phys Oceanogr 27:2072–2078CrossRef Thorpe SA (1997) On the interaction of internal waves reflecting from slopes. J Phys Oceanogr 27:2072–2078CrossRef
go back to reference Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Meteor Soc 79: 61–78CrossRef Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Meteor Soc 79: 61–78CrossRef
go back to reference Troy CD, Koseff JR (2005) The instability and breaking of long internal waves. J Fluid Mech 543: 107–136CrossRef Troy CD, Koseff JR (2005) The instability and breaking of long internal waves. J Fluid Mech 543: 107–136CrossRef
go back to reference Van Leer B (1979) Toward the ultimate conservative difference scheme. V: A second order sequel to Godunov’s method. J Comput Phys 32: 101–136CrossRef Van Leer B (1979) Toward the ultimate conservative difference scheme. V: A second order sequel to Godunov’s method. J Comput Phys 32: 101–136CrossRef
go back to reference Van Senden, DC, Imboden DM (1989) Internal seiche pumping between sill-separated basins. Geophys Astrophys Fluid Dyn 48: 135–150CrossRef Van Senden, DC, Imboden DM (1989) Internal seiche pumping between sill-separated basins. Geophys Astrophys Fluid Dyn 48: 135–150CrossRef
go back to reference Venayagamoorthy SK, Fringer OB (2005) Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves. Geophys Res Lett. doi:10.1029 /2005GL023432 Venayagamoorthy SK, Fringer OB (2005) Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves. Geophys Res Lett. doi:10.1029 /2005GL023432
go back to reference Vlasenko VI, Hutter K (2002a) Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Processes in Geophysics 8: 223–239CrossRef Vlasenko VI, Hutter K (2002a) Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Processes in Geophysics 8: 223–239CrossRef
go back to reference Vlasenko VI, Hutter K (2002b) Transformation and disintegration of strongly nonlinear internal waves by topography in stratified lakes. Annales Geophys 20: 2087–2103CrossRef Vlasenko VI, Hutter K (2002b) Transformation and disintegration of strongly nonlinear internal waves by topography in stratified lakes. Annales Geophys 20: 2087–2103CrossRef
go back to reference Vlasenko V, Hutter K (2002c) Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J Phys Oceanogr 32: 1779–1790CrossRef Vlasenko V, Hutter K (2002c) Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J Phys Oceanogr 32: 1779–1790CrossRef
go back to reference Vlasenko V, Ostrovsky L, Hutter K (2005) Adiabatic behaviour of strongly nonlinear internal solitary waves in slope-shelf areas. J Geophys Res. doi: 10.1029/2004JC002705 Vlasenko V, Ostrovsky L, Hutter K (2005) Adiabatic behaviour of strongly nonlinear internal solitary waves in slope-shelf areas. J Geophys Res. doi: 10.1029/2004JC002705
go back to reference Wessels F, Hutter K (1996) Interaction of internal waves with topographic sill in a two-layer fluid. J Phys Oceanogr 26: 5–20CrossRef Wessels F, Hutter K (1996) Interaction of internal waves with topographic sill in a two-layer fluid. J Phys Oceanogr 26: 5–20CrossRef
go back to reference Whitham GB (1974) Linear and nonlinear waves. Wiley, New York Whitham GB (1974) Linear and nonlinear waves. Wiley, New York
go back to reference Winters KB, Lombard PN, Riley JJ, D’Asaro EA (1995) Available potential energy and mixing in density stratified fluids. J Fluid Mech 289: 115–128CrossRef Winters KB, Lombard PN, Riley JJ, D’Asaro EA (1995) Available potential energy and mixing in density stratified fluids. J Fluid Mech 289: 115–128CrossRef
go back to reference Wuest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Ann Rev Fluid Mech 35: 373–425CrossRef Wuest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Ann Rev Fluid Mech 35: 373–425CrossRef
go back to reference Zhao Z, Klemas V, Zheng Q, Yan X (2003) Satellite observation of internal solitary waves converting polarity. Geophys Res Let. doi:10.1029/2003GL018286 Zhao Z, Klemas V, Zheng Q, Yan X (2003) Satellite observation of internal solitary waves converting polarity. Geophys Res Let. doi:10.1029/2003GL018286
Metadata
Title
Numerical Simulations of the Nonhydrostatic Transformation of Basin-Scale Internal Gravity Waves and Wave-Enhanced Meromixis in Lakes
Authors
V. Maderich
I. Brovchenko
K. Terletska
K. Hutter
Copyright Year
2012
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-23438-5_4