Skip to main content
Top

2019 | OriginalPaper | Chapter

Numerical Solutions and Pattern Formation Process in Fractional Diffusion-Like Equations

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays, a lot of researchers have challenged the use of classical diffusion equation to model real life situations. To circumvent some of the up-roaring challenges, time and space fractional derivatives have been proposed as alternative to model some anomalous diffusion or related processes where a particle plume spreads at inconsistent rate with the classical Brownian motion model. In this work, we shall consider the general diffusion equations with fractional order derivatives which describe the diffusion in complex systems. Fractional diffusion equation is obtained by allowing the exponent order \(\alpha \) to vary in the intervals (0, 1) and (1, 2) which correspond to subdiffusion and superdiffusion special cases. For the numerical approximations, we propose to use the newly correct version of the Adams-Bashforth scheme which takes into account the nonlinearity of the kernels such as the Mittag-Leffler law for the Atangana-Baleanu case, the power law for the Riemann-Liouville and Caputo derivatives. The efficiency and accuracy of the numerical schemes based on these operators will be justified by reporting their norm infinity and norm relative errors. The complexity of the dynamics in the equations will be discussed theoretically by examining their local and global stability analysis. Our numerical experiment results are expected to give a new direction into pattern formation process in fractional diffusion-like scenarios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Atangana, A.: Derivative with a New Parameter: Theory, Methods and Applications. Academic Press, New York (2016)MATHCrossRef Atangana, A.: Derivative with a New Parameter: Theory, Methods and Applications. Academic Press, New York (2016)MATHCrossRef
2.
go back to reference Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, New York (2017)MATH Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, New York (2017)MATH
3.
go back to reference Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)CrossRef Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)CrossRef
4.
go back to reference Atangana, A., Gómez-Aguilar, J.F.: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws. Chaos Solitons Fractals 102, 285–294 (2017)MathSciNetMATHCrossRef Atangana, A., Gómez-Aguilar, J.F.: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws. Chaos Solitons Fractals 102, 285–294 (2017)MathSciNetMATHCrossRef
5.
go back to reference Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)MathSciNetMATHCrossRef Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)MathSciNetMATHCrossRef
6.
go back to reference Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)MathSciNetMATHCrossRef Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)MathSciNetMATHCrossRef
7.
go back to reference Atangana, A., Owolabi, K.M.: New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 13(1), 1–19 (2018)MathSciNetMATHCrossRef Atangana, A., Owolabi, K.M.: New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 13(1), 1–19 (2018)MathSciNetMATHCrossRef
8.
go back to reference Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)MathSciNetMATHCrossRef Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)MathSciNetMATHCrossRef
9.
go back to reference Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017)MathSciNetMATHCrossRef Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017)MathSciNetMATHCrossRef
10.
go back to reference Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015) Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)
11.
go back to reference Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2, 1–11 (2016)CrossRef Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2, 1–11 (2016)CrossRef
12.
go back to reference Cetinkaya, A., Klymaz, O.: The solution of the time-fractional diffusion equation by the generalized differential transform method. Math. Comput. Model. 57, 2349–2354 (2013)MATHCrossRef Cetinkaya, A., Klymaz, O.: The solution of the time-fractional diffusion equation by the generalized differential transform method. Math. Comput. Model. 57, 2349–2354 (2013)MATHCrossRef
13.
go back to reference Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Qurashi, M.M.A.l.: Bateman-Feshbach tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation. Entropy 19(2), 1–21 (2017)CrossRef Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Qurashi, M.M.A.l.: Bateman-Feshbach tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation. Entropy 19(2), 1–21 (2017)CrossRef
14.
go back to reference Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F., Valtierra-Rodríguez, M.: Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order. Phys. A: Stat. Mech. Appl. 487, 1–21 (2017)MathSciNetCrossRef Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F., Valtierra-Rodríguez, M.: Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order. Phys. A: Stat. Mech. Appl. 487, 1–21 (2017)MathSciNetCrossRef
15.
go back to reference Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F.: A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A: Stat. Mech. Appl. 491, 406–424 (2018)MathSciNetCrossRef Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F.: A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A: Stat. Mech. Appl. 491, 406–424 (2018)MathSciNetCrossRef
16.
go back to reference Cuahutenango-Barro, B., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos Solitons Fractals 115, 283–299 (2018)MathSciNetMATHCrossRef Cuahutenango-Barro, B., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos Solitons Fractals 115, 283–299 (2018)MathSciNetMATHCrossRef
17.
go back to reference Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 353–369 (1937)MATH Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 353–369 (1937)MATH
19.
go back to reference Gafiychuk, V.V., Datsko, B.Y.: Pattern formation in a fractional reaction diffusion system. Phys. A 365, 300–306 (2006)CrossRef Gafiychuk, V.V., Datsko, B.Y.: Pattern formation in a fractional reaction diffusion system. Phys. A 365, 300–306 (2006)CrossRef
20.
go back to reference Ghanbari, B., Gómez-Aguilar, J.F.: Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives. Chaos Solitons Fractals 116, 114–120 (2018)MathSciNetCrossRef Ghanbari, B., Gómez-Aguilar, J.F.: Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives. Chaos Solitons Fractals 116, 114–120 (2018)MathSciNetCrossRef
21.
go back to reference Gnitchogna, R., Atangana, A.: New two step Laplace Adam-Bashforth method for integer a noninteger order partial differential equations. Numer. Methods Partial Differ. Equs. 1, 1–19 (2017)MATH Gnitchogna, R., Atangana, A.: New two step Laplace Adam-Bashforth method for integer a noninteger order partial differential equations. Numer. Methods Partial Differ. Equs. 1, 1–19 (2017)MATH
22.
go back to reference Gómez-Aguilar, J.F.: Novel analytical solutions of the fractional Drude model. Optik 168, 728–740 (2018)CrossRef Gómez-Aguilar, J.F.: Novel analytical solutions of the fractional Drude model. Optik 168, 728–740 (2018)CrossRef
23.
go back to reference Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132, 1–13 (2017)CrossRef Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132, 1–13 (2017)CrossRef
24.
go back to reference Gómez-Aguilar, J.F., Dumitru, B.: Fractional transmission line with losses. Zeitschrift für Naturforschung A 69(10–11), 539–546 (2014)CrossRef Gómez-Aguilar, J.F., Dumitru, B.: Fractional transmission line with losses. Zeitschrift für Naturforschung A 69(10–11), 539–546 (2014)CrossRef
25.
go back to reference Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equs. 2016(1), 1–17 (2016)MATHCrossRef Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equs. 2016(1), 1–17 (2016)MATHCrossRef
26.
go back to reference Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M.: Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 30(15), 1937–1952 (2016)CrossRef Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M.: Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 30(15), 1937–1952 (2016)CrossRef
27.
go back to reference Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, J.F.: Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circ. Theor. Appl. 1, 1–22 (2017) Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, J.F.: Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circ. Theor. Appl. 1, 1–22 (2017)
28.
go back to reference Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Baleanu, D., Khan, H.: Chaos in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law. Entropy 19(12), 1–16 (2017)MathSciNetCrossRef Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Baleanu, D., Khan, H.: Chaos in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law. Entropy 19(12), 1–16 (2017)MathSciNetCrossRef
29.
go back to reference Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)MATHCrossRef Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)MATHCrossRef
30.
go back to reference Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)MathSciNetMATHCrossRef Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)MathSciNetMATHCrossRef
32.
go back to reference Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Netherlands (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Netherlands (2006)MATH
33.
go back to reference Morales-Delgado, V.F., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)CrossRef Morales-Delgado, V.F., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)CrossRef
34.
go back to reference Morales-Delgado, V.F., Gómez-Aguilar, J.F., Kumar, S., Taneco-Hernández, M.A.: Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel. Eur. Phys. J. Plus 133(5), 1–20 (2018) Morales-Delgado, V.F., Gómez-Aguilar, J.F., Kumar, S., Taneco-Hernández, M.A.: Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel. Eur. Phys. J. Plus 133(5), 1–20 (2018)
35.
go back to reference Murray, J.D.: Mathematical Biology I: Spatial Models and Biomedical Applications. Springer, Berlin (2003)MATHCrossRef Murray, J.D.: Mathematical Biology I: Spatial Models and Biomedical Applications. Springer, Berlin (2003)MATHCrossRef
36.
go back to reference Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publication, New York (2006)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publication, New York (2006)MATH
37.
go back to reference Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, New York (2011)MATHCrossRef Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, New York (2011)MATHCrossRef
38.
go back to reference Owolabi, K.M.: Second or fourth-order finite difference operators, which one is most effective? Int. J. Stat. Math. 1, 44–54 (2014) Owolabi, K.M.: Second or fourth-order finite difference operators, which one is most effective? Int. J. Stat. Math. 1, 44–54 (2014)
39.
go back to reference Owolabi, K.M.: Robust IMEX schemes for solving two-dimensional reaction-diffusion models. Int. J. Nonlinear Sci. Numer. Simul. 16, 271–284 (2015)MathSciNetMATH Owolabi, K.M.: Robust IMEX schemes for solving two-dimensional reaction-diffusion models. Int. J. Nonlinear Sci. Numer. Simul. 16, 271–284 (2015)MathSciNetMATH
40.
go back to reference Owolabi, K.M.: Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems. Chaos Solitons Fractals 93, 89–98 (2016)MathSciNetMATHCrossRef Owolabi, K.M.: Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems. Chaos Solitons Fractals 93, 89–98 (2016)MathSciNetMATHCrossRef
41.
go back to reference Owolabi, K.M.: Numerical solution of diffusive HBV model in a fractional medium. Springer Plus 2016, 1–19 (2016) Owolabi, K.M.: Numerical solution of diffusive HBV model in a fractional medium. Springer Plus 2016, 1–19 (2016)
42.
go back to reference Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simuls. 44, 304–317 (2017)MathSciNetCrossRef Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simuls. 44, 304–317 (2017)MathSciNetCrossRef
43.
go back to reference Owolabi, K.M.: Mathematical modelling and analysis of two-component system with Caputo fractional derivative order. Chaos Solitons Fractals 103, 544–554 (2017)MathSciNetMATHCrossRef Owolabi, K.M.: Mathematical modelling and analysis of two-component system with Caputo fractional derivative order. Chaos Solitons Fractals 103, 544–554 (2017)MathSciNetMATHCrossRef
44.
go back to reference Owolabi, K.M., Atangana, A.: Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative. Chaos Solitons Fractals 105, 111–119 (2017)MathSciNetMATHCrossRef Owolabi, K.M., Atangana, A.: Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative. Chaos Solitons Fractals 105, 111–119 (2017)MathSciNetMATHCrossRef
45.
go back to reference Owolabi, K.M., Patidar, K.C.: Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)MathSciNetMATH Owolabi, K.M., Patidar, K.C.: Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)MathSciNetMATH
46.
go back to reference Owolabi, K.M., Patidar, K.C.: Numerical solution of singular patterns in one-dimensional Gray-Scott-like models. Int. J. Nonlinear Sci. Numer. Simul. 15, 437–462 (2014)MathSciNetMATHCrossRef Owolabi, K.M., Patidar, K.C.: Numerical solution of singular patterns in one-dimensional Gray-Scott-like models. Int. J. Nonlinear Sci. Numer. Simul. 15, 437–462 (2014)MathSciNetMATHCrossRef
47.
go back to reference Owolabi, K.M., Patidar, K.C.: Solution of pattern waves for diffusive Fisher-like non-linear equations with adaptive methods. Int. J. Nonlinear Sci. Numer. Simul. 17, 291–304 (2016)MathSciNetMATH Owolabi, K.M., Patidar, K.C.: Solution of pattern waves for diffusive Fisher-like non-linear equations with adaptive methods. Int. J. Nonlinear Sci. Numer. Simul. 17, 291–304 (2016)MathSciNetMATH
48.
go back to reference Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications. Academic Press, San Diego, Calif, USA (1999)MATH Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications. Academic Press, San Diego, Calif, USA (1999)MATH
49.
go back to reference Tateishi, A.A., Ribeiro, H.V., Lenzi, E.K.: The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 5, 1–9 (2017)CrossRef Tateishi, A.A., Ribeiro, H.V., Lenzi, E.K.: The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 5, 1–9 (2017)CrossRef
Metadata
Title
Numerical Solutions and Pattern Formation Process in Fractional Diffusion-Like Equations
Author
Kolade M. Owolabi
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11662-0_12