Skip to main content
Top

2016 | OriginalPaper | Chapter

Numerical Study of a Monolithic Fluid–Structure Formulation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The conservation laws of continuum mechanic are naturally written in an Eulerian frame where the difference between a fluid and a solid is only in the expression of the stress tensors, usually with Newton’s hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. There are currently two favored approaches to Fluid Structured Interactions (FSI) both working with the equations for the solid in the initial domain; one uses an ALE formulation for the fluid and the other matches the fluid–structure interfaces using Lagrange multipliers and the immersed boundary method. By contrast the proposed formulation works in the frame of physically deformed solids and proposes a discretization where the structures have large displacements computed in the deformed domain together with the fluid in the same; in such a monolithic formulation velocities of solids and fluids are computed all at once in a single variational formulation by a semi-implicit in time and the finite element method. Besides the simplicity of the formulation the advantage is a single algorithm for a variety of problems including multi-fluids, free boundaries, and FSI. The idea is not new but the progress of mesh generators renders this approach feasible and even reasonably robust. In this article the method and its discretization are presented, stability is discussed showing in a loose fashion were are the difficulties and why one is able to show convergence of monolithic algorithms on fixed domains for fluids in compliant shell vessels restricted to small displacements. A numerical section discusses implementation issues and presents a few simple tests.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs, New-Jersey (1996)MATH Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs, New-Jersey (1996)MATH
2.
go back to reference Boffi, D., Cavallini, N., Gastaldi, L.: The finite element immersed boundary method with distributed lagrange multiplier. SIAM J. Numer. Anal. 53 (6), 2584–2604 (2015)MathSciNetCrossRefMATH Boffi, D., Cavallini, N., Gastaldi, L.: The finite element immersed boundary method with distributed lagrange multiplier. SIAM J. Numer. Anal. 53 (6), 2584–2604 (2015)MathSciNetCrossRefMATH
3.
go back to reference Boukir, K., Maday, Y., Metivet, B.: A high order characteristics method for the incompressible Navier-Stokes equations. Comp. Methods Appl. Math. Eng. 116, 211–218 (1994)MathSciNetCrossRefMATH Boukir, K., Maday, Y., Metivet, B.: A high order characteristics method for the incompressible Navier-Stokes equations. Comp. Methods Appl. Math. Eng. 116, 211–218 (1994)MathSciNetCrossRefMATH
4.
go back to reference Bukaca, M., Canic, S., Glowinski, R., Tambacac, J., Quainia, A.: Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)MathSciNetCrossRef Bukaca, M., Canic, S., Glowinski, R., Tambacac, J., Quainia, A.: Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)MathSciNetCrossRef
5.
go back to reference Chacón-Rebollo, T., Girault, V., Murat, F., Pironneau, O.: Analysis of a coupled fluid-structure model with applications to hemodynamics. SIAM J. Numer. Anal. 54 (2), 994–1019 (2016)MathSciNetCrossRefMATH Chacón-Rebollo, T., Girault, V., Murat, F., Pironneau, O.: Analysis of a coupled fluid-structure model with applications to hemodynamics. SIAM J. Numer. Anal. 54 (2), 994–1019 (2016)MathSciNetCrossRefMATH
6.
go back to reference Ciarlet, P.G.: Mathematical Elasticity. North Holland, Amsterdam (1988)MATH Ciarlet, P.G.: Mathematical Elasticity. North Holland, Amsterdam (1988)MATH
8.
go back to reference Cottet, G.H., Maitre, E., Milcent, T.: Eulerian formulation and level set models for incompressible fluid-structure interaction. M2AN Math. Model. Numer. Anal. 42 (3), 471–492 (2008) Cottet, G.H., Maitre, E., Milcent, T.: Eulerian formulation and level set models for incompressible fluid-structure interaction. M2AN Math. Model. Numer. Anal. 42 (3), 471–492 (2008)
9.
go back to reference Coupez, Th., Silva, L., Hachem, E.: Implicit boundary and adaptive anisotropic meshes. In: Peretto, S., Formaggia, L. (eds.) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA-SIMAI Springer Series, vol. 5. Springer, Cham (2015) Coupez, Th., Silva, L., Hachem, E.: Implicit boundary and adaptive anisotropic meshes. In: Peretto, S., Formaggia, L. (eds.) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA-SIMAI Springer Series, vol. 5. Springer, Cham (2015)
10.
go back to reference Fernandez, M.A., Mullaert, J., Vidrascu, M.: Explicit Robin-Neumann schemes for the coupling of incompressible fluids with thin-walled structures. Comp. Methods Appl. Mech. Eng. 267, 566–593 (2013)MathSciNetCrossRefMATH Fernandez, M.A., Mullaert, J., Vidrascu, M.: Explicit Robin-Neumann schemes for the coupling of incompressible fluids with thin-walled structures. Comp. Methods Appl. Mech. Eng. 267, 566–593 (2013)MathSciNetCrossRefMATH
11.
go back to reference Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovasuclar Mathematics. Springer MS&A Series. Springer, Berlin (2009)CrossRef Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovasuclar Mathematics. Springer MS&A Series. Springer, Berlin (2009)CrossRef
12.
go back to reference Hauret, P.: Méthodes numériques pour la dynamique des structures non-linéaires incompressibles à deux échelles. Doctoral thesis, Ecole Polytechnique (2004) Hauret, P.: Méthodes numériques pour la dynamique des structures non-linéaires incompressibles à deux échelles. Doctoral thesis, Ecole Polytechnique (2004)
14.
go back to reference Hron, J., Turek, S.: A monolithic fem solver for an ALE formulation of fluid’structure interaction with configuration for numerical benchmarking. In: Wesseling, P., Onate, E., Periaux, J. (eds.) European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006. TU Delft, The Netherlands (2006) Hron, J., Turek, S.: A monolithic fem solver for an ALE formulation of fluid’structure interaction with configuration for numerical benchmarking. In: Wesseling, P., Onate, E., Periaux, J. (eds.) European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006. TU Delft, The Netherlands (2006)
15.
go back to reference Kane, C., Marsden, J.E., Ortiz, M., West, M.: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49, 1295–1325 (2000)MathSciNetCrossRefMATH Kane, C., Marsden, J.E., Ortiz, M., West, M.: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49, 1295–1325 (2000)MathSciNetCrossRefMATH
16.
go back to reference Léger, S.: Méthode lagrangienne actualisée pour des problèmes hyperélastiques en très grandes déformations. Thèse de doctorat, Université Laval (2014) Léger, S.: Méthode lagrangienne actualisée pour des problèmes hyperélastiques en très grandes déformations. Thèse de doctorat, Université Laval (2014)
17.
go back to reference Le Tallec, P., Hauret, P.: Energy conservation in fluid-structure interactions. In: Neittanmaki, P., Kuznetsov, Y., Pironneau, O. (eds.) Numerical Methods for Scientific Computing, Variational Problems and Applications. CIMNE, Barcelona, (2003) Le Tallec, P., Hauret, P.: Energy conservation in fluid-structure interactions. In: Neittanmaki, P., Kuznetsov, Y., Pironneau, O. (eds.) Numerical Methods for Scientific Computing, Variational Problems and Applications. CIMNE, Barcelona, (2003)
18.
go back to reference Le Tallec, P., Mouro, J.: Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng. 190 (24–25), 3039–3068 (2001)CrossRefMATH Le Tallec, P., Mouro, J.: Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng. 190 (24–25), 3039–3068 (2001)CrossRefMATH
19.
go back to reference Liu, J.: A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near contact of structures. J. Comput. Phys. 304 380–423 (2016)MathSciNetCrossRefMATH Liu, J.: A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near contact of structures. J. Comput. Phys. 304 380–423 (2016)MathSciNetCrossRefMATH
20.
go back to reference Liu, I.-S., Cipolatti, R., Rincon, M.A.: Incremental linear approximation for finite elasticity. In: Proceedings of the ICNAAM 2006. Wiley, Weinheim (2006) Liu, I.-S., Cipolatti, R., Rincon, M.A.: Incremental linear approximation for finite elasticity. In: Proceedings of the ICNAAM 2006. Wiley, Weinheim (2006)
21.
go back to reference Lucquin, B., Pironneau, O.: Introduction to Scientific Computing. Wiley, New York (1996)MATH Lucquin, B., Pironneau, O.: Introduction to Scientific Computing. Wiley, New York (1996)MATH
22.
go back to reference Marsden, J., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1993)MATH Marsden, J., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1993)MATH
23.
go back to reference Nobile, F., Vergara, C.: An effective fluid-structure interaction formulation for vascular dynamics by generalized robin conditions. SIAM J. Sci. Comput. 30 (2), 731–763 (2008)MathSciNetCrossRefMATH Nobile, F., Vergara, C.: An effective fluid-structure interaction formulation for vascular dynamics by generalized robin conditions. SIAM J. Sci. Comput. 30 (2), 731–763 (2008)MathSciNetCrossRefMATH
25.
go back to reference Pironneau, O.: Finite Element Methods for Fluids. Wiley, New York (1989)MATH Pironneau, O.: Finite Element Methods for Fluids. Wiley, New York (1989)MATH
Metadata
Title
Numerical Study of a Monolithic Fluid–Structure Formulation
Author
Olivier Pironneau
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-45680-5_15

Premium Partner