Skip to main content
Top

2016 | OriginalPaper | Chapter

Object Recognition in Baggage Inspection Using Adaptive Sparse Representations of X-ray Images

Authors : Domingo Mery, Erick Svec, Marco Arias

Published in: Image and Video Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, X-ray screening systems have been used to safeguard environments in which access control is of paramount importance. Security checkpoints have been placed at the entrances to many public places to detect prohibited items such as handguns and explosives. Human operators complete these tasks because automated recognition in baggage inspection is far from perfect. Research and development on X-ray testing is, however, ongoing into new approaches that can be used to aid human operators. This paper attempts to make a contribution to the field of object recognition by proposing a new approach called Adaptive Sparse Representation (XASR+). It consists of two stages: learning and testing. In the learning stage, for each object of training dataset, several random patches are extracted from its X-ray images in order to construct representative dictionaries. A stop-list is used to remove very common words of the dictionaries. In the testing stage, random test patches of the query image are extracted, and for each test patch a dictionary is built concatenating the ‘best’ representative dictionary of each object. Using this adapted dictionary, each test patch is classified following the Sparse Representation Classification (SRC) methodology. Finally, the query image is classified by patch voting. Thus, our approach is able to deal with less constrained conditions including some contrast variability, pose, intra-class variability, size of the image and focal distance. We tested the effectiveness of our method for the detection of four different objects. In our experiments, the recognition rate was more than 95 % in each class, and more than 85 % if the object is occluded less than 15 %. Results show that XASR+ deals well with unconstrained conditions, outperforming various representative methods in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A similar approach was developed by us for a biometric problem [21].
 
2
Ratio of correctly classified samples to the total number of samples.
 
3
The code for the MATLAB implementation is available on our webpage http://​dmery.​ing.​puc.​cl/​index.​php/​material/​. The X-ray images belong to GDXray database [24].
 
Literature
1.
go back to reference Zentai, G.: X-ray imaging for homeland security. In: IEEE International Workshop on Imaging Systems and Techniques (IST 2008), pp. 1–6 (September 2008) Zentai, G.: X-ray imaging for homeland security. In: IEEE International Workshop on Imaging Systems and Techniques (IST 2008), pp. 1–6 (September 2008)
2.
go back to reference Parliament, E.: Aviation security with a special focus on security scanners. European Parliament Resolution (2010/2154(INI)), pp. 1–10 (October 2012) Parliament, E.: Aviation security with a special focus on security scanners. European Parliament Resolution (2010/2154(INI)), pp. 1–10 (October 2012)
3.
go back to reference Halbherr, T., Schwaninger, A., Bolfing, A.: How Image Based Factors and Human Factors Contribute to Threat Detection Performance in X-Ray Aviation Security Screening. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 419–438. Springer, Heidelberg (2008)CrossRef Halbherr, T., Schwaninger, A., Bolfing, A.: How Image Based Factors and Human Factors Contribute to Threat Detection Performance in X-Ray Aviation Security Screening. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 419–438. Springer, Heidelberg (2008)CrossRef
4.
go back to reference Schwaninger, A., Bolfing, A., Halbherr, T., Helman, S., Belyavin, A., Hay, L.: The impact of image based factors and training on threat detection performance in X-ray screening. In: Proceedings of the 3rd International Conference on Research in Air Transportation, ICRAT 2008, pp. 317–324 (2008) Schwaninger, A., Bolfing, A., Halbherr, T., Helman, S., Belyavin, A., Hay, L.: The impact of image based factors and training on threat detection performance in X-ray screening. In: Proceedings of the 3rd International Conference on Research in Air Transportation, ICRAT 2008, pp. 317–324 (2008)
5.
go back to reference Blalock, G., Kadiyali, V., Simon, D.H.: The Impact of post-9/11 airport security measures on the demand for air travel. J. Law Econ. 50(4), 731–755 (2007)CrossRef Blalock, G., Kadiyali, V., Simon, D.H.: The Impact of post-9/11 airport security measures on the demand for air travel. J. Law Econ. 50(4), 731–755 (2007)CrossRef
6.
go back to reference Michel, S., Koller, S., de Ruiter, J., Moerland, R., Hogervorst, M., Schwaninger, A.: Computer-based training increases efficiency in X-ray image interpretation by aviation security screeners. In: 2007 41st Annual IEEE International Carnahan Conference on Security Technology, pp. 201–206 (October 2007) Michel, S., Koller, S., de Ruiter, J., Moerland, R., Hogervorst, M., Schwaninger, A.: Computer-based training increases efficiency in X-ray image interpretation by aviation security screeners. In: 2007 41st Annual IEEE International Carnahan Conference on Security Technology, pp. 201–206 (October 2007)
7.
8.
go back to reference Riffo, V., Mery, D.: Automated detection of threat objects using adapted implicit shape model. IEEE Trans. Syst. Man Cybern. Syst. (2015, in press) Riffo, V., Mery, D.: Automated detection of threat objects using adapted implicit shape model. IEEE Trans. Syst. Man Cybern. Syst. (2015, in press)
9.
go back to reference Uroukov, I., Speller, R.: A preliminary approach to intelligent x-ray imaging for baggage inspection at airports. Sig. Process. Res. 4, 1–11 (2015)CrossRef Uroukov, I., Speller, R.: A preliminary approach to intelligent x-ray imaging for baggage inspection at airports. Sig. Process. Res. 4, 1–11 (2015)CrossRef
10.
go back to reference Turcsany, D., Mouton, A., Breckon, T.P.: Improving feature-based object recognition for X-ray baggage security screening using primed visualwords. In: IEEE International Conference on Industrial Technology (ICIT 2013), pp. 1140–1145 Turcsany, D., Mouton, A., Breckon, T.P.: Improving feature-based object recognition for X-ray baggage security screening using primed visualwords. In: IEEE International Conference on Industrial Technology (ICIT 2013), pp. 1140–1145
11.
go back to reference Zhang, N., Zhu, J.: A study of x-ray machine image local semantic features extraction model based on bag-of-words for airport security. Int. J. Smart Sens. Intell. Syst. 8(1), 45–64 (2015) Zhang, N., Zhu, J.: A study of x-ray machine image local semantic features extraction model based on bag-of-words for airport security. Int. J. Smart Sens. Intell. Syst. 8(1), 45–64 (2015)
12.
13.
go back to reference Riffo, V., Mery, D.: Active x-ray testing of complex objects. Insight-Non-Destr. Test. Condition Monit. 54(1), 28–35 (2012)CrossRef Riffo, V., Mery, D.: Active x-ray testing of complex objects. Insight-Non-Destr. Test. Condition Monit. 54(1), 28–35 (2012)CrossRef
14.
go back to reference Schmidt, U., Roth, S., Franzel, T.: Object Detection in Multi-view X-Ray Images. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM and OAGM 2012. LNCS, vol. 7476, pp. 144–154. Springer, Heidelberg (2012)CrossRef Schmidt, U., Roth, S., Franzel, T.: Object Detection in Multi-view X-Ray Images. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM and OAGM 2012. LNCS, vol. 7476, pp. 144–154. Springer, Heidelberg (2012)CrossRef
15.
go back to reference Mouton, A., Flitton, G.T., Bizot, S.: An evaluation of image denoising techniques applied to CT baggage screening imagery. In: IEEE International Conference on Industrial Technology (ICIT 2013), IEEE (2013) Mouton, A., Flitton, G.T., Bizot, S.: An evaluation of image denoising techniques applied to CT baggage screening imagery. In: IEEE International Conference on Industrial Technology (ICIT 2013), IEEE (2013)
16.
go back to reference Flitton, G., Breckon, T.P., Megherbi, N.: A comparison of 3D interest point descriptors with application to airport baggage object detection in complex CT imagery. Pattern Recogn. 46(9), 2420–2436 (2013)CrossRef Flitton, G., Breckon, T.P., Megherbi, N.: A comparison of 3D interest point descriptors with application to airport baggage object detection in complex CT imagery. Pattern Recogn. 46(9), 2420–2436 (2013)CrossRef
17.
go back to reference Megherbi, N., Han, J., Breckon, T.P., Flitton, G.T.: A comparison of classification approaches for threat detection in CT based baggage screening. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 3109–3112. IEEE (2012) Megherbi, N., Han, J., Breckon, T.P., Flitton, G.T.: A comparison of classification approaches for threat detection in CT based baggage screening. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 3109–3112. IEEE (2012)
18.
go back to reference Flitton, G., Mouton, A., Breckon, T.P.: Object classification in 3D baggage security computed tomography imagery using visual codebooks. Pattern Recogn. 48(8), 2489–2499 (2015)CrossRef Flitton, G., Mouton, A., Breckon, T.P.: Object classification in 3D baggage security computed tomography imagery using visual codebooks. Pattern Recogn. 48(8), 2489–2499 (2015)CrossRef
19.
go back to reference Mouton, A., Breckon, T.P.: Materials-based 3D segmentation of unknown objects from dual-energy computed tomography imagery in baggage security screening. Pattern Recogn. 48(6), 1961–1978 (2015)CrossRef Mouton, A., Breckon, T.P.: Materials-based 3D segmentation of unknown objects from dual-energy computed tomography imagery in baggage security screening. Pattern Recogn. 48(6), 1961–1978 (2015)CrossRef
20.
go back to reference Tosic, I., Frossard, P.: Dictionary learning. IEEE Sig. Process. Mag. 28(2), 27–38 (2011)CrossRef Tosic, I., Frossard, P.: Dictionary learning. IEEE Sig. Process. Mag. 28(2), 27–38 (2011)CrossRef
21.
go back to reference Mery, D., Bowyer, K.: Automatic facial attribute analysis via adaptive sparse representation of random patches. Pattern Recogn. Lett. 68(Part 2), 260–269 (2015)CrossRef Mery, D., Bowyer, K.: Automatic facial attribute analysis via adaptive sparse representation of random patches. Pattern Recogn. Lett. 68(Part 2), 260–269 (2015)CrossRef
22.
go back to reference Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRef Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRef
23.
go back to reference Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 591–606 (2009)CrossRef Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 591–606 (2009)CrossRef
24.
go back to reference Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., Carrasco, M.: GDXray: The database of X-ray images for nondestructive testing. J. Nondestr. Eval. 34(4), 1–12 (2015)CrossRef Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., Carrasco, M.: GDXray: The database of X-ray images for nondestructive testing. J. Nondestr. Eval. 34(4), 1–12 (2015)CrossRef
25.
go back to reference Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefMATH Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefMATH
26.
go back to reference Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRef Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRef
27.
go back to reference Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1, pp. 1–2, Prague (2004) Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1, pp. 1–2, Prague (2004)
28.
go back to reference Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized clustering forests. In: Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), pp. 985–992. MIT Press (2007) Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized clustering forests. In: Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), pp. 985–992. MIT Press (2007)
Metadata
Title
Object Recognition in Baggage Inspection Using Adaptive Sparse Representations of X-ray Images
Authors
Domingo Mery
Erick Svec
Marco Arias
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-29451-3_56