Skip to main content
Top

2017 | OriginalPaper | Chapter

9. Obtaining the Tortuosity Factor as a Function of Crystallinity in Polyethylene Membranes

Authors : L. F. del Castillo, S. I. Hernández, V. Compañ

Published in: Membranes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When a gas flows through a polymeric membrane, the diffusion process is affected by the tortuosity factor (τ) and the chain immobilization factor (β) as two impedance elements which affect the diffusion in systems with large molecules. In this chapter, a thermodynamic framework to obtain values for the tortuosity and the chain immobilization parameters in semicrystalline polymeric membranes is presented. A thermodynamic expression for the factors τ and β in terms of the activation entropy and the cohesion energy of the polymeric structure was obtained. The model was applied to experimental data obtained for linear low-density polyethylene (LLDPE) membranes with different percentages of crystallinity and with different densities (0.94, 0.93, 0.92, 0.91, 0.90, and 0.87 g/cm3). Experimental measurements for diffusion and permeability of oxygen, methane, ethane, ethylene, propane, propylene, and helium were performed by the time-lag method. The temperature and pressure were of 30 °C and 1 bar, respectively, throughout all the diffusion and permeability analyses. Finally, to understand the differences between the parameters characterizing the immobilization of the chains and the tortuosity, with respect to the diffusion of gases, a thermodynamic analysis using helium was done.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Crank, J. (1975). The mathematics of diffusion. London: Oxford University Press. Crank, J. (1975). The mathematics of diffusion. London: Oxford University Press.
2.
go back to reference Yampolskii, Y., Pinnau, I., & Freeman, B. D. (2006). Materials science of membranes for gas and vapor separation. Sussex: Wiley.CrossRef Yampolskii, Y., Pinnau, I., & Freeman, B. D. (2006). Materials science of membranes for gas and vapor separation. Sussex: Wiley.CrossRef
3.
go back to reference Eyring, H., Colburn, C. B., & Zwolinski, B. J. (1950). The activated complex in chemisorption and catalysis. Discussions of the Faraday Society, 8, 39–46.CrossRef Eyring, H., Colburn, C. B., & Zwolinski, B. J. (1950). The activated complex in chemisorption and catalysis. Discussions of the Faraday Society, 8, 39–46.CrossRef
4.
go back to reference Michaels, A. S., & Parker, R. B. (1959). Sorption and flow of gases in polyethylene. Journal of Polymer Science, 41, 53–71.CrossRef Michaels, A. S., & Parker, R. B. (1959). Sorption and flow of gases in polyethylene. Journal of Polymer Science, 41, 53–71.CrossRef
5.
go back to reference Michaels, A. S., & Bixler, H. J. (1961). Solubility of gases in polyethylene. Journal of Polymer Science, 50, 393–412.CrossRef Michaels, A. S., & Bixler, H. J. (1961). Solubility of gases in polyethylene. Journal of Polymer Science, 50, 393–412.CrossRef
6.
go back to reference Glastone, S., Laidler, K. J., & Eyring, H. (1941). The theory of rate process. New York: McGraw Hill. Glastone, S., Laidler, K. J., & Eyring, H. (1941). The theory of rate process. New York: McGraw Hill.
7.
go back to reference Compañ, V., del Castillo, L. F., Hernández, S. I., López-González, M. M., & Riande, E. (2010). Crystallinity effect on the gas transport in semicrystalline coextruded films based on linear low density polyethylene. Journal of Polymer Science Part B, 48, 634–642.CrossRef Compañ, V., del Castillo, L. F., Hernández, S. I., López-González, M. M., & Riande, E. (2010). Crystallinity effect on the gas transport in semicrystalline coextruded films based on linear low density polyethylene. Journal of Polymer Science Part B, 48, 634–642.CrossRef
8.
go back to reference Compañ, V., del Castillo, L. F., Hernández, S. I., López-González, M. M., & Riande, E. (2007). On the crystallinity effect on the gas sorption in semicrystalline linear low density polyethylene (LLDPE). Journal of Polymer Science Part B, 45, 1798–1807.CrossRef Compañ, V., del Castillo, L. F., Hernández, S. I., López-González, M. M., & Riande, E. (2007). On the crystallinity effect on the gas sorption in semicrystalline linear low density polyethylene (LLDPE). Journal of Polymer Science Part B, 45, 1798–1807.CrossRef
9.
go back to reference Peterlin, A. (1975). Dependence of diffusive transport on morphology of crystalline polymers. Journal of Macromolecular Science: Physics, 11, 57–87.CrossRef Peterlin, A. (1975). Dependence of diffusive transport on morphology of crystalline polymers. Journal of Macromolecular Science: Physics, 11, 57–87.CrossRef
10.
go back to reference Hedenqvist, M., Angelstok, A., Edsberg, L., Larson, P. T., & Gedde, U. W. (1966). Diffusion of small-molecule penetrants in polyethylene: free volume and morphology. Polymer, 37, 2887–2902.CrossRef Hedenqvist, M., Angelstok, A., Edsberg, L., Larson, P. T., & Gedde, U. W. (1966). Diffusion of small-molecule penetrants in polyethylene: free volume and morphology. Polymer, 37, 2887–2902.CrossRef
11.
go back to reference Moisan, J. Y. (1985). In J. Comyn (Ed.), Polymer permeability. London: Chapman and Hall. Moisan, J. Y. (1985). In J. Comyn (Ed.), Polymer permeability. London: Chapman and Hall.
12.
go back to reference Meares, P. (1954). The diffusion of gases through polyvinyl acetate. Journal of the American Chemical Society, 76, 3415–3422.CrossRef Meares, P. (1954). The diffusion of gases through polyvinyl acetate. Journal of the American Chemical Society, 76, 3415–3422.CrossRef
13.
go back to reference Tsujita, Y. (2000). Gas sorption, diffusion and permeation of ordered polymeric membranes. Chinese Journal of Polymer Science, 18, 301–307. Tsujita, Y. (2000). Gas sorption, diffusion and permeation of ordered polymeric membranes. Chinese Journal of Polymer Science, 18, 301–307.
14.
go back to reference Tsujita, Y. (1992). In Y. Osada, & T. Nakagawa (Eds.), Membrane science and technology. New York: Marcel Dekker. Tsujita, Y. (1992). In Y. Osada, & T. Nakagawa (Eds.), Membrane science and technology. New York: Marcel Dekker.
Metadata
Title
Obtaining the Tortuosity Factor as a Function of Crystallinity in Polyethylene Membranes
Authors
L. F. del Castillo
S. I. Hernández
V. Compañ
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45315-6_9

Premium Partners