Skip to main content
Top

2024 | OriginalPaper | Chapter

Occurrence of Nonlinear Electron Mobility in GaAs/InxGa1−xAs Coupled Double Quantum Well FET

Authors : Sangita R. Panda, Manoranjan Pradhan, Trinath Sahu, Ajit Kumar Panda

Published in: Micro and Nanoelectronics Devices, Circuits and Systems

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mobility, µ of electrons shows oscillating behavior in an asymmetric GaAs/InxGa1-xAs Quantum Well (QW) Field Effect Transistor (FET) structure. So as to analyze µ, we take asymmetric doping concentrations, varying Nd1 in the substrate barrier and keeping Nd2 constant in surface barrier. The well widths W1 and W2 are also asymmetrically changed such that the sum (W1 + W2) remains constant. Resonance can be achieved for the subband energy states between the two QWs for a set of W1 and W2 by varying Nd1. A considerable variation is observed in spreading of subband wave functions near resonance that affect the subband mobilities through intersubband effects, thus causing a drop in µ. We show that dip in µ enhances by decreasing the difference in W1 and W2. The results of nonlinearity in µ can help in analyzing the characteristics of the QWFET devices near resonance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.-H. Chen, W.-S. Liao, H.-C. Yang, S.-J. Wang, Y.-G. Liaw, H. Wang, H. Gu, M.-C. Wang, High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure. Nanoscale Res Lett 7, Article number: 431 (2012) S.-H. Chen, W.-S. Liao, H.-C. Yang, S.-J. Wang, Y.-G. Liaw, H. Wang, H. Gu, M.-C. Wang, High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure. Nanoscale Res Lett 7, Article number: 431 (2012)
2.
go back to reference G. Dewey, M.K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, R. Chau, Carrier transport in high-mobility III–V quantum-well transistors and performance impact for high-speed low-power logic applications. IEEE Electron Device Lett. 29, 1094–1097 (2008)CrossRef G. Dewey, M.K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, R. Chau, Carrier transport in high-mobility III–V quantum-well transistors and performance impact for high-speed low-power logic applications. IEEE Electron Device Lett. 29, 1094–1097 (2008)CrossRef
3.
go back to reference K.K. Bhuwalka et al., In0.53Ga0.47As-based nMOSFET design for low standby power applications. IEEE Trans. Electron Devices 62, 2816–2823 (2015) K.K. Bhuwalka et al., In0.53Ga0.47As-based nMOSFET design for low standby power applications. IEEE Trans. Electron Devices 62, 2816–2823 (2015)
4.
go back to reference A. Nishida, K. Hasegawa, R. Ohama, S. Fujikawa, S. Hara, H. I. Fujishiro, Comparative study on nano-scale III-V double-gate MOSFETs with various channel materials. Physica Status Solidi C 1413–1416 (2013) A. Nishida, K. Hasegawa, R. Ohama, S. Fujikawa, S. Hara, H. I. Fujishiro, Comparative study on nano-scale III-V double-gate MOSFETs with various channel materials. Physica Status Solidi C 1413–1416 (2013)
5.
go back to reference S. Tewari, A. Biswas, A. Mallik, Impact of a spacer layer on the analog performance of asymmetric InP/InGaAs nMOSFETs. IEEE Trans. Electron Devices 63, 2313–2320 (2016)CrossRef S. Tewari, A. Biswas, A. Mallik, Impact of a spacer layer on the analog performance of asymmetric InP/InGaAs nMOSFETs. IEEE Trans. Electron Devices 63, 2313–2320 (2016)CrossRef
6.
go back to reference D.H. Kim, J.A. del Alamo, J.H. Lee, K.S. Seo, Logic suitability of 50-nm In0.7Ga0.3As HEMTs for beyond-CMOS applications. IEEE Trans. Electron Devices 54, 2606–2613 (2007) D.H. Kim, J.A. del Alamo, J.H. Lee, K.S. Seo, Logic suitability of 50-nm In0.7Ga0.3As HEMTs for beyond-CMOS applications. IEEE Trans. Electron Devices 54, 2606–2613 (2007)
7.
go back to reference J. Lin, T.W. Kim, D.A. Antoniadis, J.A. del Alamo, A self-aligned InGaAs quantum-well metal-oxide-semiconductor field-effect transistor fabricated through a lift-off-free front-end process. Appl. Phys. Express 5, 064002 (2012)CrossRef J. Lin, T.W. Kim, D.A. Antoniadis, J.A. del Alamo, A self-aligned InGaAs quantum-well metal-oxide-semiconductor field-effect transistor fabricated through a lift-off-free front-end process. Appl. Phys. Express 5, 064002 (2012)CrossRef
8.
go back to reference H. Riel, L.-E. Wernersson, M. Hong, J.A. del Alamo, III–V Compound Semiconductor Transistors—From Planar to Nanowire Structures (Cambridge University Press, 2014), vol. 39 H. Riel, L.-E. Wernersson, M. Hong, J.A. del Alamo, III–V Compound Semiconductor Transistors—From Planar to Nanowire Structures (Cambridge University Press, 2014), vol. 39
9.
go back to reference P. Bhattacharya, Properties of III–V Quantum Wells and Superlattices (INSPEC, IEE, London, 1996), p. 187 P. Bhattacharya, Properties of III–V Quantum Wells and Superlattices (INSPEC, IEE, London, 1996), p. 187
10.
go back to reference S. Chowdhury, Md. Jabed Iqbal, Nanostructure Physics of Coupled Quantum Well: Parametric Variation of Energy Spectrum (American Academic Press, 2015) S. Chowdhury, Md. Jabed Iqbal, Nanostructure Physics of Coupled Quantum Well: Parametric Variation of Energy Spectrum (American Academic Press, 2015)
11.
go back to reference S. Panda, K.T. Dora, A.K. Panda, T. Sahu, Electron mobility in asymmetric GaN/AlGaN quantum well transistor structure: effect of alloy disorder scattering. Phys. Scr. 96, 124058 (2021)CrossRef S. Panda, K.T. Dora, A.K. Panda, T. Sahu, Electron mobility in asymmetric GaN/AlGaN quantum well transistor structure: effect of alloy disorder scattering. Phys. Scr. 96, 124058 (2021)CrossRef
12.
go back to reference D.-D. Jin, S.-Y. Yang, L.-W. Zhang, H.-j. Li, H. Zhang, J.-x. Wang, T. Yang, X.-L. Liu, Q.-S. Zhu, Z.-G. Wang, Electron scattering in GaAs/InGaAs quantum wells subjected to an in-plane magnetic field. J. Appl. Phys. 113, 213711 (2013) D.-D. Jin, S.-Y. Yang, L.-W. Zhang, H.-j. Li, H. Zhang, J.-x. Wang, T. Yang, X.-L. Liu, Q.-S. Zhu, Z.-G. Wang, Electron scattering in GaAs/InGaAs quantum wells subjected to an in-plane magnetic field. J. Appl. Phys. 113, 213711 (2013)
13.
go back to reference S.R. Panda, A. Sahu, S. Das, A.K. Panda, T. Sahu, Doping dependent nonlinear electron mobility in GaAs/InxGa1-xAs coupled quantum well pseudomorphic MODFET structure. Semiconductors 54, 788–795 (2020)CrossRef S.R. Panda, A. Sahu, S. Das, A.K. Panda, T. Sahu, Doping dependent nonlinear electron mobility in GaAs/InxGa1-xAs coupled quantum well pseudomorphic MODFET structure. Semiconductors 54, 788–795 (2020)CrossRef
14.
go back to reference L. Sodergren, N.S. Garigapati, M. Bor, E. Lind, Mobility of near surface MOVPE grown InGaAs/InP quantum wells. Appl. Phys. Lett. 117, 013102 (2020)CrossRef L. Sodergren, N.S. Garigapati, M. Bor, E. Lind, Mobility of near surface MOVPE grown InGaAs/InP quantum wells. Appl. Phys. Lett. 117, 013102 (2020)CrossRef
15.
go back to reference D.A. Safonov, A.N. Vinichenko, N.I. Kargin, I.S. Vasil’evskii, Electron transport in PHEMT AlGaAs/InGaAs/GaAs quantum wells at different temperatures: influence of one-side δ-Si doping. Semiconductors 52, 189–194 (2018) D.A. Safonov, A.N. Vinichenko, N.I. Kargin, I.S. Vasil’evskii, Electron transport in PHEMT AlGaAs/InGaAs/GaAs quantum wells at different temperatures: influence of one-side δ-Si doping. Semiconductors 52, 189–194 (2018)
16.
go back to reference A. Babinski, J. Siwiec-Matuszyk, J.M. Baranowski, Transport and quantum electron mobility in the modulation Si d-doped pseudomorphic GaAs/In0.2Ga0.8As/Al0.2Ga0.8As quantum well grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 77, 999–1001 (2000) A. Babinski, J. Siwiec-Matuszyk, J.M. Baranowski, Transport and quantum electron mobility in the modulation Si d-doped pseudomorphic GaAs/In0.2Ga0.8As/Al0.2Ga0.8As quantum well grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 77, 999–1001 (2000)
17.
go back to reference N. Sahoo, A.K. Panda, T. Sahu, Electron mobility in AlxGa1−xAs based square-parabolic double quantum well HEMT structure—effect of asymmetric doping profile. Physica Status Solidi B 254, 1700221 (2017) N. Sahoo, A.K. Panda, T. Sahu, Electron mobility in AlxGa1−xAs based square-parabolic double quantum well HEMT structure—effect of asymmetric doping profile. Physica Status Solidi B 254, 1700221 (2017)
18.
go back to reference N. Sahoo, A.K. Sahu, S.K. Palo, Electron mobility in asymmetric coupled AlxGa1-xAs parabolic quantum well structure–Impact of external electric field. Physica B 608, 412798 (2021)CrossRef N. Sahoo, A.K. Sahu, S.K. Palo, Electron mobility in asymmetric coupled AlxGa1-xAs parabolic quantum well structure–Impact of external electric field. Physica B 608, 412798 (2021)CrossRef
19.
go back to reference DYu., Protasov, K.S. Zhuravlev, A.V. Rzhanov, The influence of impurity profiles on mobility of two-dimensional electron gas in AlGaAs/InGaAs/GaAs heterostructures modulation-doped by donors and acceptors. Solid-State Electron. 129, 66–72 (2017) DYu., Protasov, K.S. Zhuravlev, A.V. Rzhanov, The influence of impurity profiles on mobility of two-dimensional electron gas in AlGaAs/InGaAs/GaAs heterostructures modulation-doped by donors and acceptors. Solid-State Electron. 129, 66–72 (2017)
20.
go back to reference B.R. Bennett, T.F. Chick, J. Brad Boos, J.G. Champlain, A.A. Podpirka, Strained InGaAs/InAlAs quantum wells for complementary III–V transistors. J. Cryst. Growth 388, 92–97 (2014) B.R. Bennett, T.F. Chick, J. Brad Boos, J.G. Champlain, A.A. Podpirka, Strained InGaAs/InAlAs quantum wells for complementary III–V transistors. J. Cryst. Growth 388, 92–97 (2014)
21.
go back to reference J. Pozela, K. Pozela, V. Juciene, A. Suziedelis, N. Zurauskiene, A.S. Shkolnik, Electron transport in modulation-doped InAlAs/InGaAs/InAlAs and AlGaAs/InGaAs/AlGaAs heterostructures. Lith. J. Phys. 51, 270–275 (2011)CrossRef J. Pozela, K. Pozela, V. Juciene, A. Suziedelis, N. Zurauskiene, A.S. Shkolnik, Electron transport in modulation-doped InAlAs/InGaAs/InAlAs and AlGaAs/InGaAs/AlGaAs heterostructures. Lith. J. Phys. 51, 270–275 (2011)CrossRef
22.
go back to reference T. Sahu, S. Palo, P.K. Nayak, N. Sahoo, Enhancement of low temperature electron mobility due to an electric field in an InGaAs/InAlAs double quantum well structure. Semiconductors 48, 1318–1323 (2014)CrossRef T. Sahu, S. Palo, P.K. Nayak, N. Sahoo, Enhancement of low temperature electron mobility due to an electric field in an InGaAs/InAlAs double quantum well structure. Semiconductors 48, 1318–1323 (2014)CrossRef
23.
go back to reference M. Mohapatra, A. Sahu, S.R. Panda, S. Das, T. Sahu, A.K. Panda, Nonlinear electron transport in GaAs/InGaAs asymmetric double-quantum-well pseudomorphic high-electron-mobility transistor structure. Jpn. J. Appl. Phys. 56, 064101 (2017)CrossRef M. Mohapatra, A. Sahu, S.R. Panda, S. Das, T. Sahu, A.K. Panda, Nonlinear electron transport in GaAs/InGaAs asymmetric double-quantum-well pseudomorphic high-electron-mobility transistor structure. Jpn. J. Appl. Phys. 56, 064101 (2017)CrossRef
24.
go back to reference T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)CrossRef T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)CrossRef
25.
go back to reference K. Inoue, T. Matsuno, Electron mobilities in modulation-doped AlxGa1−xAs/GaAs and pseudomorphic AlxGa1−xAs/InyGa1−yAs quantum-well structures. Phys Rev. B 47, 3771–3778 (1993)CrossRef K. Inoue, T. Matsuno, Electron mobilities in modulation-doped AlxGa1−xAs/GaAs and pseudomorphic AlxGa1−xAs/InyGa1−yAs quantum-well structures. Phys Rev. B 47, 3771–3778 (1993)CrossRef
26.
go back to reference T. Sahu, J. Patnaik, Low temperature electron mobility in a coupled quantum well system. Superlattices Microstruct. 30, 119–127 (2001)CrossRef T. Sahu, J. Patnaik, Low temperature electron mobility in a coupled quantum well system. Superlattices Microstruct. 30, 119–127 (2001)CrossRef
27.
go back to reference R.K. Nayak, S. Das, A.K. Panda, T. Sahu, Structural asymmetry induced size quantized nonmonotonous electron mobility in GaAs/AlxGa1-xAs double quantum well structure. Superlattices Microstruct. 89, 75–82 (2016)CrossRef R.K. Nayak, S. Das, A.K. Panda, T. Sahu, Structural asymmetry induced size quantized nonmonotonous electron mobility in GaAs/AlxGa1-xAs double quantum well structure. Superlattices Microstruct. 89, 75–82 (2016)CrossRef
28.
go back to reference A.K. Panda, S.R. Panda, A. Sahu, S. Das, T. Sahu, Structural asymmetry induced nonmonotonic electron mobility in pseudomorphic double quantum well high electron mobility transistors. Phys. Scr. 95, 054003 (2020)CrossRef A.K. Panda, S.R. Panda, A. Sahu, S. Das, T. Sahu, Structural asymmetry induced nonmonotonic electron mobility in pseudomorphic double quantum well high electron mobility transistors. Phys. Scr. 95, 054003 (2020)CrossRef
29.
go back to reference Y. Zhang, Z. Wang, R. Guo, G. Liu, S. Xu, W. Bao, J. Zhang, Y. Hao, High performance InGaN double channel high electron mobility transistors with strong coupling effect between the channels. Appl. Phys. Lett. 113, 233503 (2018)CrossRef Y. Zhang, Z. Wang, R. Guo, G. Liu, S. Xu, W. Bao, J. Zhang, Y. Hao, High performance InGaN double channel high electron mobility transistors with strong coupling effect between the channels. Appl. Phys. Lett. 113, 233503 (2018)CrossRef
30.
go back to reference S.R. Panda, M. Pradhan, T. Sahu, A.K. Panda, Study of nonmonotonic electron mobility due to influence of asymmetric structure parameters in pseudomorphic heterojunction field effect transistors. Phys. Scr. 97, 114006 (2022)CrossRef S.R. Panda, M. Pradhan, T. Sahu, A.K. Panda, Study of nonmonotonic electron mobility due to influence of asymmetric structure parameters in pseudomorphic heterojunction field effect transistors. Phys. Scr. 97, 114006 (2022)CrossRef
31.
go back to reference N. Sahoo, T. Sahu, Mobility modulation in inverted delta doped coupled double quantum well structure. Physica B 498, 49–54 (2016)CrossRef N. Sahoo, T. Sahu, Mobility modulation in inverted delta doped coupled double quantum well structure. Physica B 498, 49–54 (2016)CrossRef
32.
go back to reference W.Y.-Sy Su, V.C.-P. Lu, C.-B. Wu, J.-S. Wang, J.-L. Shen, K.-C. Chiu, Temperature-dependent charge-carrier transport between Si-δ-doped layers and AlGaAs/InGaAs/AlGaAs quantum well with various spacer layer thicknesses measured by Hall-effect analysis. Sci. Rep. 10, Article number: 12503 (2020) W.Y.-Sy Su, V.C.-P. Lu, C.-B. Wu, J.-S. Wang, J.-L. Shen, K.-C. Chiu, Temperature-dependent charge-carrier transport between Si-δ-doped layers and AlGaAs/InGaAs/AlGaAs quantum well with various spacer layer thicknesses measured by Hall-effect analysis. Sci. Rep. 10, Article number: 12503 (2020)
33.
go back to reference T. Sahu, N. Sahoo, Oscillating electron mobility in GaAs/AlxGa1-xAs double quantum well structure under applied electric field. Superlattices Microstruct. 77, 162–170 (2015)CrossRef T. Sahu, N. Sahoo, Oscillating electron mobility in GaAs/AlxGa1-xAs double quantum well structure under applied electric field. Superlattices Microstruct. 77, 162–170 (2015)CrossRef
34.
go back to reference R.J. Choi, Y.B. Hahn, Efficient blue-light emitting diodes with InGaN/GaN triangular shaped multiple quantum wells. Appl. Phys. Lett. 82, 2764 (2003)CrossRef R.J. Choi, Y.B. Hahn, Efficient blue-light emitting diodes with InGaN/GaN triangular shaped multiple quantum wells. Appl. Phys. Lett. 82, 2764 (2003)CrossRef
35.
go back to reference S.K. Palo, T. Sahu, A.K. Panda, Effect of non-square structure potential on the multisubband electron mobility in double quantum well structure. Physica B 545, 62–68 (2018)CrossRef S.K. Palo, T. Sahu, A.K. Panda, Effect of non-square structure potential on the multisubband electron mobility in double quantum well structure. Physica B 545, 62–68 (2018)CrossRef
Metadata
Title
Occurrence of Nonlinear Electron Mobility in GaAs/InxGa1−xAs Coupled Double Quantum Well FET
Authors
Sangita R. Panda
Manoranjan Pradhan
Trinath Sahu
Ajit Kumar Panda
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4495-8_7