Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2015

Open Access 01-12-2015 | Research

On a Hardy-Hilbert-type inequality with parameters

Authors: Bicheng Yang, Qiang Chen

Published in: Journal of Inequalities and Applications | Issue 1/2015

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

By means of the way of weight coefficients and technique of real analysis, an extension of a Hardy-Hilbert-type inequality with parameters and a best possible constant factor is given. The equivalent forms, the operator expression with the norm, the reverses and some particular cases are also considered.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. QC participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

1 Introduction

Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x),g(y)\geq0\), \(f\in L^{p}(\mathbf{R}_{+})\), \(g\in L^{q}(\mathbf{R}_{+})\), \(\|f\|_{p} =(\int_{0}^{\infty }f^{p}(x)\,dx)^{\frac{1}{p}}>0\), \(\|g\|_{q}>0\). We have the following Hardy-Hilbert’s integral inequality with the best possible constant factor \(\frac{\pi}{\sin(\pi/p)}\) (cf. [1]):
$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy< \frac{\pi }{\sin(\pi/p)}\|f\|_{p}\|g\|_{q}. $$
(1)
Assuming that \(a_{m},b_{n}\geq0\),
$$ a=\{a_{m}\}_{m=1}^{\infty}\in l^{p}=\Biggl\{ a;\|a\|_{p}=\Biggl(\sum_{m=1}^{\infty }|a_{m}|^{p} \Biggr)^{\frac{1}{p}}< \infty\Biggr\} , $$
\(b=\{b_{n}\}_{n=1}^{\infty}\in l^{q}\), \(\|a\|_{p},\|b\|_{q}>0\), we have the following Hardy-Hilbert’s inequality with the same best possible constant factor \(\frac{\pi}{\sin(\pi/p)}\) (cf. [1]):
$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\pi/p)}\|a \|_{p}\|b\|_{q}. $$
(2)
Hardy-Hilbert-type inequalities, specially (1) and (2), are basically important in mathematical analysis and its applications (cf. [17]).
If \(\mu_{i},\upsilon_{j}>0\) (\(i,j\in\mathbf{N}\)),
$$ U_{m}:=\sum_{i=1}^{m} \mu_{i},\qquad V_{n}:=\sum_{j=1}^{n} \upsilon_{j}\quad (m,n\in \mathbf{N}), $$
(3)
then we have the following inequality (cf. [1], Theorem 321, p.261):
$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{\mu_{m}^{1/q}\upsilon _{n}^{1/p}a_{m}b_{n}}{U_{m}+V_{n}}< \frac{\pi}{\sin(\pi/p)}\|a\|_{p}\|b\|_{q}. $$
(4)
Replacing \(\mu_{m}^{1/q}a_{m}\) and \(\upsilon_{n}^{1/p}b_{n}\) by \(a_{m}\) and \(b_{n}\) in (4), respectively, we obtain the following equivalent form of (4):
$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac {a_{m}b_{n}}{U_{m}+V_{n}}< \frac{\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=1}^{\infty}\frac {a_{m}^{p}}{\mu _{m}^{p-1}} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty} \frac {b_{n}^{q}}{\upsilon_{n}^{q-1}} \Biggr) ^{\frac{1}{q}}. $$
(5)
For \(\mu_{i}=\upsilon_{j}=1\) (\(i,j\in\mathbf{N}\)), both (4) and (5) reduce to (2). We call (4) and (5) Hardy-Hilbert-type inequalities.
Note
The authors of [1] (Theorem 321, p.261) did not prove that (4) is valid with the best possible constant factor.
In 1998, by introducing an independent parameter \(\lambda\in(0,1]\), Yang [8] gave an extension of (1) for \(p=q=2\). Following the methods of [8], Yang [5] gave some best extensions of (1) and (2) as follows.
If \(\lambda_{1},\lambda_{2}\in\mathbf{R}=(-\infty,\infty)\), \(\lambda _{1}+\lambda_{2}=\lambda\), \(k_{\lambda}(x,y)\) is a nonnegative homogeneous function of degree −λ, with \(k(\lambda_{1})=\int_{0}^{\infty }k_{\lambda}(t,1)t^{\lambda_{1}-1}\,dt\in\mathbf{R}_{+}\), \(\phi (x)=x^{p(1-\lambda_{1})-1}\), \(\psi(x)=x^{q(1-\lambda _{2})-1}\), \(f(x),g(y)\geq 0\),
$$ f\in L_{p,\phi}(\mathbf{R}_{+})= \biggl\{ f;\|f \|_{p,\phi }:=\biggl(\int_{0}^{\infty} \phi(x)\bigl|f(x)\bigr|^{p}\,dx\biggr)^{\frac{1}{p}}< \infty \biggr\} , $$
\(g\in L_{q,\psi}(\mathbf{R}_{+})\), \(\|f\|_{p,\phi},\|g\|_{q,\psi}>0\), then
$$ \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda }(x,y)f(x)g(y) \,dx\,dy< k(\lambda _{1})\|f\|_{p,\phi}\|g\|_{q,\psi}, $$
(6)
where the constant factor \(k(\lambda_{1})\) is the best possible. Moreover, if \(k_{\lambda}(x,y)\) is finite and \(k_{\lambda}(x,y)x^{\lambda _{1}-1}(k_{\lambda}(x,y)y^{\lambda_{2}-1})\) is decreasing with respect to \(x>0\) (\(y>0\)), then for \(a_{m},b_{n}\geq0\),
$$ a\in l_{p,\phi}= \Biggl\{ a;\|a\|_{p,\phi}:=\Biggl(\sum _{n=1}^{\infty}\phi (n)|a_{n}|^{p} \Biggr)^{\frac{1}{p}}< \infty \Biggr\} , $$
\(b=\{b_{n}\}_{n=1}^{\infty}\in l_{q,\psi}\), \(\|a\|_{p,\phi },\|b\|_{q,\psi }>0\), we have
$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}k_{\lambda }(m,n)a_{m}b_{n}< k( \lambda_{1})\|a\|_{p,\phi}\|b\|_{q,\psi}, $$
(7)
where the constant factor \(k(\lambda_{1})\) is still the best possible.
Clearly, for \(\lambda=1\), \(k_{1}(x,y)=\frac{1}{x+y}\), \(\lambda_{1}=\frac {1}{q}\), \(\lambda_{2}=\frac{1}{p}\), inequality (6) reduces to (1), while (7) reduces to (2). For \(0<\lambda_{1},\lambda _{2}\leq1\), \(\lambda_{1}+\lambda_{2}=\lambda\), we set \(k_{\lambda }(x,y)=\frac{1}{(x+y)^{\lambda}}\). Then, by (7), it follows that
$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}}< B( \lambda_{1},\lambda_{2})\|a\|_{p,\phi}\|b \|_{q,\psi}, $$
(8)
where the constant factor \(B(\lambda_{1},\lambda_{2})\) is the best possible (\(B(u,v)\) is the beta function). Some other results including multidimensional Hilbert-type inequalities are provided by [927].
In 2015, by adding a few conditions, Yang [28] gave an extension of (8) and (5) as follows:
$$\begin{aligned} &\sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{(U_{m}+V_{n})^{\lambda}} \\ &\quad< B(\lambda_{1},\lambda_{2}) \Biggl( \sum _{m=1}^{\infty}\frac{U_{m}^{p(1-\lambda_{1})-1}a_{m}^{p}}{\mu_{m}^{p-1}} \Biggr) ^{\frac {1}{p}} \Biggl( \sum_{n=1}^{\infty}\frac{V_{n}^{q(1-\lambda_{2})-1}b_{n}^{q}}{ \upsilon_{n}^{q-1}} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(9)
where the constant factor \(B(\lambda_{1},\lambda_{2})\) is the best possible. For \(\mu_{i}=\upsilon_{j}=1\) (\(i,j\in\mathbf{N}\)), (9) reduces to (8); for \(\lambda=1\), \(\lambda_{1}=\frac{1}{q}\), \(\lambda _{2}=\frac{1}{p}\), (9) reduces to (5).
In this paper, by using the way of weight coefficients and technique of real analysis, a Hardy-Hilbert-type inequality with parameters and a best possible constant factor is given, which is with the kernel \(\frac{(\min \{x,c_{1}y\})^{\alpha}}{(\max\{x,c_{1}y\})^{\lambda+\alpha}}\) similar to (9). The extended inequalities, the equivalent forms, the operator expression with the norm, the reverses and some particular cases are also considered.

2 Some lemmas

In the following, we agree on that \(\mu_{i},\upsilon_{j}>0\) (\(i,j\in \mathbf{N}\)), \(U_{m}\) and \(V_{n}\) are defined by (3), \(p\neq0,1\), \(\frac {1}{p}+\frac{1}{q}=1\), \(a_{m},b_{n}\geq0\) (\(m,n\in\mathbf{N}\)), \(\|a\|_{p,\Phi _{\lambda}}=(\sum_{m=1}^{\infty}\Phi_{\lambda}(m)a_{m}^{p})^{\frac {1}{p}}\), \(\|b\|_{q,\Psi_{\lambda}}=(\sum_{n=1}^{\infty}\Psi_{\lambda }(n)b_{n}^{q})^{\frac{1}{q}}\), where
$$ \Phi_{\lambda}(m):=\frac{U_{m}^{p(1-\lambda_{1})-1}}{\mu _{m}^{p-1}},\qquad \Psi _{\lambda}(n):= \frac{V_{n}^{q(1-\lambda_{2})-1}}{\upsilon_{n}^{q-1}}\quad(m,n\in\mathbf{N}). $$
Lemma 1
If \(g(t)\) (>0) is decreasing in \(\mathbf{R}_{+}\) and strictly decreasing in \([n_{0},\infty)\subset\mathbf{R}_{+}\) (\(n_{0}\in \mathbf{N}\)), satisfying \(\int_{0}^{\infty}g(t)\,dt\in\mathbf{R}_{+}\), then we have
$$ \int_{1}^{\infty}g(t)\,dt< \sum _{n=1}^{\infty}g(n)< \int_{0}^{\infty}g(t) \,dt. $$
(10)
Proof
Since, by the assumption, we have
$$\begin{aligned}& \int_{n}^{n+1}g(t)\,dt \leq g(n)\leq\int _{n-1}^{n}g(t)\,dt\quad (n=1,\ldots,n_{0}),\\& \int_{n_{0}+1}^{n_{0}+2}g(t)\,dt < g(n_{0}+1)< \int_{n_{0}}^{n_{0}+1}g(t)\,dt, \end{aligned}$$
it follows that
$$ 0< \int_{1}^{n_{0}+2}g(t)\,dt< \sum _{n=1}^{n_{0}+1}g(n)< \sum_{n=1}^{n_{0}+1} \int_{n-1}^{n}g(t)\,dt=\int _{0}^{n_{0}+1}g(t)\,dt< \infty. $$
By the same way, we still have
$$ 0< \int_{n_{0}+2}^{\infty}g(t)\,dt\leq\sum _{n=n_{0}+2}^{\infty}g(n)\leq \int_{n_{0}+1}^{\infty}g(t) \,dt< \infty. $$
Hence, making plus for the above two inequalities, we have (10). □
Example 1
For \(s\in\mathbf{N}\), \(0< c_{1}\leq\cdots\leq c_{s}<\infty\), \(\lambda_{1},\lambda_{2}>-\alpha\), \(\lambda_{1}+\lambda _{2}=\lambda\), we set
$$ k_{\lambda}(x,y):=\prod_{k=1}^{s} \frac{(\min\{x,c_{k}y\})^{\frac {\alpha}{s}}}{(\max\{x,c_{k}y\})^{\frac{\lambda+\alpha}{s}}}\quad\bigl((x,y)\in\mathbf {R}_{+}^{2}= \mathbf{R}_{+}\times\mathbf{R}_{+}\bigr). $$
(a) We find
$$\begin{aligned} k_{s}(\lambda_{1}) :=&\int_{0}^{\infty}k_{\lambda}(1,u)t^{\lambda _{2}-1} \,du\overset{u=1/t}{=}\int_{0}^{\infty}k_{\lambda}(t,1)t^{\lambda _{1}-1} \,dt\\ =&\int_{0}^{\infty}\prod _{k=1}^{s}\frac{(\min\{t,c_{k}\})^{\frac {\alpha}{s}}}{(\max\{t,c_{k}\})^{\frac{\lambda+\alpha}{s}}}t^{\lambda _{1}-1}\,dt\\ =&\int_{0}^{c_{1}}\prod _{k=1}^{s}\frac{(\min\{t,c_{k}\})^{\frac {\alpha}{s}}t^{\lambda_{1}-1}}{(\max\{t,c_{k}\})^{\frac{\lambda+\alpha}{s}}}\,dt+\int _{c_{s}}^{\infty}\prod_{k=1}^{s} \frac{(\min\{t,c_{k}\})^{\frac{ \alpha}{s}}t^{\lambda_{1}-1}}{(\max\{t,c_{k}\})^{\frac{\lambda +\alpha}{s}}}\,dt \\ &{}+\sum_{i=1}^{s-1}\int _{c_{i}}^{c_{i+1}}\prod_{k=1}^{s} \frac{(\min \{t,c_{k}\})^{\frac{\alpha}{s}}t^{\lambda_{1}-1}}{(\max\{t,c_{k}\})^{ \frac{\lambda+\alpha}{s}}}\,dt \\ =&\prod_{k=1}^{s}\frac{1}{c_{k}^{(\lambda+\alpha)/s}}\int _{0}^{c_{1}}t^{\lambda_{1}+\alpha-1}\,dt+\prod _{k=1}^{s}c_{k}^{\alpha /s}\int _{c_{s}}^{\infty}t^{-\lambda_{2}-\alpha-1}\,dt \\ &{}+\sum_{i=1}^{s-1}\int _{c_{i}}^{c_{i+1}}\prod_{k=1}^{i} \frac {c_{k}^{\frac{\alpha}{s}}}{t^{\frac{\lambda+\alpha}{s}}}\prod_{k=i+1}^{s} \frac {t^{\frac{\alpha}{s}}}{c_{k}^{\frac{\lambda+\alpha}{s}}}t^{\lambda_{1}-1}\,dt \\ =&\frac{c_{1}^{\lambda_{1}+\alpha}}{\lambda_{1}+\alpha}\frac{1}{\prod_{k=1}^{s}c_{k}^{\frac{\lambda+\alpha}{s}}}+\frac{1}{(\lambda _{2}+\alpha)c_{s}^{\lambda_{2}+\alpha}}\prod _{k=1}^{s}c_{k}^{\frac {\alpha }{s}} \\ &{}+\sum_{i=1}^{s-1}\frac{\prod_{k=1}^{i}c_{k}^{\frac{\alpha}{s}}}{\prod_{k=i+1}^{s}c_{k}^{\frac{\lambda+\alpha}{s}}}\int_{c_{i}}^{c_{i+1}}t^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\alpha-1}\,dt. \end{aligned}$$
If \(\lambda_{1}-\frac{i\lambda}{s}+(1-\frac{2i}{s})\alpha\neq0\), then
$$ \int_{c_{i}}^{c_{i+1}}t^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\alpha-1}\,dt= \frac{c_{i+1}^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\alpha}-c_{i}^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\alpha}}{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac{2i}{s})\alpha}; $$
if there exists \(i_{0}\in\{1,\ldots,s-1\}\) such that \(\lambda_{1}-\frac{i_{0}\lambda}{s}+(1-\frac{2i_{0}}{s})\alpha=0\), then we find
$$ \int_{c_{i_{0}}}^{c_{i_{0}+1}}t^{\lambda_{1}-\frac{i_{0}\lambda }{s}+(1-\frac{2i_{0}}{s})\alpha-1}\,dt=\ln\biggl( \frac{c_{i_{0}+1}}{c_{i_{0}}}\biggr)=\lim_{i\rightarrow i_{0}}\int _{c_{i}}^{c_{i+1}}t^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac{2i}{s})\alpha-1}\,dt, $$
and we still indicate \(\ln(\frac{c_{i_{0}+1}}{c_{i_{0}}})\) by the following formal expression:
$$ \frac{c_{i_{0}+1}^{\lambda_{1}-\frac{i_{0}\lambda}{s}+(1-\frac {2i_{0}}{s})\alpha}-c_{i_{0}}^{\lambda_{1}-\frac{i_{0}\lambda}{s}+(1-\frac {2i_{0}}{s})\alpha}}{\lambda_{1}-\frac{i_{0}\lambda}{s}+(1-\frac {2i_{0}}{s})\alpha}. $$
Hence, we may set
$$\begin{aligned} k_{s}(\lambda_{1}) =&\frac{c_{1}^{\lambda_{1}+\alpha}}{\lambda _{1}+\alpha} \frac{1}{\prod_{k=1}^{s}c_{k}^{\frac{\lambda+\alpha }{s}}}+\frac{1}{(\lambda_{2}+\alpha)c_{s}^{\lambda_{2}+\alpha}}\prod _{k=1}^{s}c_{k}^{\frac{\alpha}{s}} \\ &{}+\sum_{i=1}^{s-1} \biggl[ \frac{c_{i+1}^{\lambda_{1}-\frac{i\lambda }{s}+(1-\frac{2i}{s})\alpha}-c_{i}^{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac {2i}{s})\alpha}}{\lambda_{1}-\frac{i\lambda}{s}+(1-\frac{2i}{s})\alpha }\frac{\prod_{k=1}^{i}c_{k}^{\frac{\alpha}{s}}}{\prod_{k=i+1}^{s}c_{k}^{\frac{ \lambda+\alpha}{s}}} \biggr] . \end{aligned}$$
(11)
In particular, (i) for \(s=1\) (or \(c_{s}=\cdots=c_{1}\)), we have \(k_{\lambda }(x,y)=\frac{(\min\{x,c_{1}y\})^{\alpha}}{(\max\{x,c_{1}y\})^{\lambda +\alpha}}\) and
$$ k_{1}(\lambda_{1})=\frac{\lambda+2\alpha}{(\lambda_{1}+\alpha )(\lambda _{2}+\alpha)}\frac{1}{c_{1}^{\lambda_{2}}}; $$
(12)
(ii) for \(s=2\), we have \(k_{\lambda}(x,y)=\frac{(\min\{x,c_{1}y\}\min \{x,c_{2}y\})^{\alpha/2}}{(\max\{x,c_{1}y\}\max\{x,c_{2}y\} )^{(\lambda +\alpha)/2}}\) and
$$ k_{2}(\lambda_{1})= \biggl( \frac{c_{1}}{c_{2}} \biggr) ^{\frac{\alpha }{2}} \biggl[ \frac{c_{1}^{\lambda_{1}-\frac{\lambda}{2}}}{(\lambda _{1}+\alpha )c_{2}^{\frac{\lambda}{2}}}+\frac{1}{(\lambda_{2}+\alpha )c_{2}^{\lambda _{2}}}+ \frac{c_{2}^{\lambda_{1}-\frac{\lambda}{2}}-c_{1}^{\lambda _{1}-\frac{\lambda}{2}}}{(\lambda_{1}-\frac{\lambda}{2})c_{2}^{\frac {\lambda}{2}}} \biggr] ; $$
(13)
(iii) for \(\alpha=0\), we have \(\lambda_{1},\lambda_{2}>0\), \(k_{\lambda }(x,y)=\frac{1}{\prod_{k=1}^{s}(\max\{x,c_{k}y\})^{\frac{\lambda }{s}}}\) and
$$\begin{aligned} k_{s}(\lambda_{1}) =&\widetilde{k}_{s}( \lambda_{1}):=\frac {c_{1}^{\lambda _{1}}}{\lambda_{1}}\frac{1}{\prod_{k=1}^{s}c_{k}^{\frac{\lambda}{s}}}+ \frac{1}{\lambda_{2}c_{s}^{\lambda_{2}}} +\sum_{i=1}^{s-1}\frac{c_{i+1}^{\lambda_{1}-\frac{i}{s}\lambda }-c_{i}^{\lambda_{1}-\frac{i}{s}\lambda}}{\lambda_{1}-\frac {i}{s}\lambda}\frac{1}{\prod_{k=i+1}^{s}c_{k}^{\frac{\lambda}{s}}}; \end{aligned}$$
(14)
(iv) for \(\alpha=-\lambda\), we have \(\lambda<\lambda_{1},\lambda_{2}<0\), \(k_{\lambda}(x,y)=\frac{1}{\prod_{k=1}^{s}(\min\{x,c_{k}y\})^{\frac{\lambda}{s}}}\) and
$$\begin{aligned} k_{s}(\lambda_{1}) =&\widehat{k}_{s}( \lambda_{1}):=\frac {c_{1}^{-\lambda _{2}}}{(-\lambda_{2})}+\frac{1}{(-\lambda_{1})c_{s}^{-\lambda_{1}}}\prod _{k=1}^{s}c_{k}^{\frac{-\lambda}{s}} +\sum_{i=1}^{s-1} \Biggl( \frac{c_{i+1}^{\lambda_{1}-\frac {s-i}{s}\lambda }-c_{i}^{\lambda_{1}-\frac{s-i}{s}\lambda}}{\lambda_{1}-\frac{s-i}{s} \lambda}\prod_{k=1}^{i}c_{k}^{\frac{-\lambda}{s}} \Biggr) ; \end{aligned}$$
(15)
(v) for \(\lambda=0\), we have \(\lambda_{2}=-\lambda_{1}\), \(|\lambda _{1}|<\alpha\) (\(\alpha>0\)),
$$ k_{0}(x,y)=\prod_{k=1}^{s} \biggl( \frac{\min\{x,c_{k}y\}}{\max\{ x,c_{k}y\}}\biggr) ^{\frac{\alpha}{s}}, $$
and
$$\begin{aligned} k_{s}(\lambda_{1}) =&k_{s}^{(0)}( \lambda_{1}):=\frac{c_{1}^{\lambda _{1}+\alpha}}{a+\lambda_{1}}\frac{1}{\prod_{k=1}^{s}c_{k}^{\frac {\alpha}{s}}}+\frac{c_{s}^{\lambda_{1}-\alpha}}{a-\lambda_{1}} \prod_{k=1}^{s}c_{k}^{\frac{\alpha}{s}} \\ &+\sum_{i=1}^{s-1} \biggl[ \frac{c_{i+1}^{\lambda_{1}+(1-\frac {2i}{s})\alpha }-c_{i}^{\lambda_{1}+(1-\frac{2i}{s})\alpha}}{\lambda_{1}+(1-\frac {2i}{s})\alpha}\frac{\prod_{k=1}^{i}c_{k}^{\frac{\alpha}{s}}}{\prod_{k=i+1}^{s}c_{k}^{\frac{\alpha}{s}}} \biggr] . \end{aligned}$$
(16)
(b) Since we find
$$\begin{aligned} k_{\lambda}(x,y)\frac{1}{y^{1-\lambda_{2}}}&=\frac{1}{y^{1-\lambda _{2}}}\prod _{k=1}^{s}\frac{(\min\{c_{k}^{-1}x,y\})^{\frac{\alpha }{s}}}{c_{k}^{\frac{\lambda}{s}}(\max\{c_{k}^{-1}x,y\})^{\frac{\lambda+\alpha}{s}}}\\ &=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} \frac{1}{y^{1-\lambda_{2}-\alpha}}\prod_{k=1}^{s}\frac{1}{c_{k}^{\frac {\lambda}{s}}(c_{k}^{-1}x)^{\frac{\lambda+\alpha}{s}}},& 0< y\leq c_{s}^{-1}x,\\ \frac{1}{y^{1+\lambda_{1}+\alpha-\frac{i}{s}(\lambda+2\alpha)}}\frac {\prod_{k=i+1}^{s}(c_{k}^{-1}x)^{\frac{\alpha}{s}}}{\prod_{k=1}^{s}c_{k}^{\frac{\lambda}{s}}\prod_{k=1}^{i}(c_{k}^{-1}x)^{\frac{\lambda+\alpha }{s}}},& c_{i+1}^{-1}x< y\leq c_{i}^{-1}x \ (i=1,\ldots,s-1), \\ \frac{1}{y^{1+\lambda_{1}+\alpha}}\prod_{k=1}^{s}\frac{(c_{k}^{-1}x)^{ \frac{\alpha}{s}}}{c_{k}^{\frac{\lambda}{s}}(y)^{\frac{\lambda +\alpha}{s}}},& c_{1}^{-1}x< y< \infty,\end{array}\displaystyle \right . \end{aligned}$$
then for \(\lambda_{2}\leq1-\alpha \) (\(\lambda_{1}>-\alpha\)), \(k_{\lambda}(x,y)\frac{1}{y^{1-\lambda_{2}}}\) is decreasing for \(y>0\) and strictly decreasing for the large enough variable y. By the same way, since
$$\begin{aligned} k_{\lambda}(x,y)\frac{1}{x^{1-\lambda_{1}}}&=\frac{1}{x^{1-\lambda _{1}}}\prod _{k=1}^{s}\frac{(\min\{x,c_{k}y\})^{\frac{\alpha}{s}}}{(\max \{x,c_{k}y\})^{\frac{\lambda+\alpha}{s}}}\\ &=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} \frac{1}{x^{1-\lambda_{1}-\alpha}}\prod_{k=1}^{s}\frac {1}{(c_{k}y)^{\frac{\lambda+\alpha}{s}}},& 0< x\leq c_{1}y, \\ \frac{1}{x^{1-\lambda_{1}-\alpha+\frac{i}{s}(\lambda+2\alpha)}}\frac {\prod_{k=1}^{i}(c_{k}y)^{\frac{\alpha}{s}}}{\prod_{k=i+1}^{s}(c_{k}y)^{ \frac{\lambda+\alpha}{s}}},& c_{i}y< x\leq c_{i+1}y\ (i=1,\ldots,s-1), \\ \frac{1}{x^{1+\lambda_{2}+\alpha}}\prod_{k=1}^{s}(c_{k}y)^{\frac {\alpha}{s}},& c_{s}y< x< \infty,\end{array}\displaystyle \right . \end{aligned}$$
then for \(\lambda_{1}\leq1-\alpha\) (\(\lambda_{2}>-\alpha\)), \(k_{\lambda}(x,y)\frac{1}{x^{1-\lambda_{1}}}\) is decreasing for \(x>0\) and strictly decreasing for the large enough variable x.
In view of (a) and (b), for \(-\alpha<\lambda_{1},\lambda_{2}\leq 1-\alpha\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(k_{\lambda}(x,y)\frac {1}{y^{1-\lambda _{2}}}\) (\(k_{\lambda}(x,y)\frac{1}{x^{1-\lambda_{1}}}\)) is decreasing for \(y>0\) (\(x>0\)) and strictly decreasing for the large enough variable \(y^{{}} (x)\) satisfying \(k_{s}(\lambda_{1})\in\mathbf{R}_{+}\).
Lemma 2
If \(s\in\mathbf{N}\), \(0< c_{1}\leq\cdots \leq c_{s}\), \(-\alpha<\lambda_{1},\lambda_{2}\leq1-\alpha\), \(\lambda _{1}+\lambda_{2}=\lambda\), \(k_{s}(\lambda_{1})\) is indicated by (11), define the following weight coefficients:
$$\begin{aligned}& \omega(\lambda_{2},m) :=\sum_{n=1}^{\infty} \prod_{k=1}^{s}\frac {(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}} \frac{U_{m}^{\lambda_{1}}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}},\quad m\in\mathbf{N}, \end{aligned}$$
(17)
$$\begin{aligned}& \varpi(\lambda_{1},n) :=\sum_{m=1}^{\infty} \prod_{k=1}^{s}\frac {(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}} \frac{V_{n}^{\lambda_{2}}\mu_{m}}{U_{m}^{1-\lambda_{1}}},\quad n\in\mathbf{N}. \end{aligned}$$
(18)
Then we have the following inequalities:
$$\begin{aligned}& \omega(\lambda_{2},m) < k_{s}(\lambda_{1}) \quad(- \alpha< \lambda_{2}\leq 1-\alpha,\lambda_{1}>-\alpha;m\in \mathbf{N}), \end{aligned}$$
(19)
$$\begin{aligned}& \varpi(\lambda_{1},n) < k_{s}(\lambda_{1}) \quad (-\alpha< \lambda_{1}\leq 1-\alpha,\lambda_{2}>-\alpha;n\in \mathbf{N}). \end{aligned}$$
(20)
Proof
We set \(\mu(t):=\mu_{m}\), \(t\in(m-1,m]\) (\(m\in\mathbf{N}\)); \(\upsilon(t):=\upsilon_{n}\), \(t\in(n-1,n]\) (\(n\in\mathbf{N}\)),
$$ U(x):=\int_{0}^{x}\mu(t)\,dt\quad(x\geq0),\qquad V(y):= \int_{0}^{y}\upsilon (t)\,dt\quad(y\geq 0). $$
(21)
Then, by (3), it follows that \(U(m)=U_{m}\), \(V(n)=V_{n}\) (\(m,n\in \mathbf{N}\)). For \(x\in(m-1,m]\), \(U^{\prime}(x)=\mu(x)=\mu_{m}\) (\(m\in\mathbf{N}\)); for \(y\in(n-1,n]\), \(V^{\prime}(y)=\upsilon(y)=\upsilon_{n}\) (\(n\in\mathbf {N}\)). Since \(V(y)\) is strictly increasing in \((n-1,n]\), \(-\alpha<\lambda _{2}\leq1-\alpha\), \(\lambda_{1}>-\alpha\), in view of Lemma 1 and Example 1, we find
$$\begin{aligned} \omega(\lambda_{2},m) =&\sum_{n=1}^{\infty} \int_{n-1}^{n}\prod_{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}}\frac{U_{m}^{\lambda _{1}}}{V_{n}^{1-\lambda_{2}}}V^{\prime}(y)\,dy \\ < &\sum_{n=1}^{\infty}\int_{n-1}^{n} \prod_{k=1}^{s}\frac{(\min \{U_{m},c_{k}V(y)\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V(y)\} )^{\frac{\lambda+\alpha}{s}}} \frac{U_{m}^{\lambda_{1}}V^{\prime }(y)}{V^{1-\lambda _{2}}(y)}\,dy. \end{aligned}$$
Setting \(t=\frac{V(y)}{U_{m}}\), we obtain \(V^{\prime}(y)\,dy=U_{m}\,dt\) and
$$\begin{aligned} \omega(\lambda_{2},m) < &\sum_{n=1}^{\infty} \int_{\frac {V(n-1)}{U_{m}}}^{\frac{V(n)}{U_{m}}}\prod_{k=1}^{s} \frac{(\min\{1,c_{k}t\})^{\frac {\alpha}{s}}}{(\max\{1,c_{k}t\})^{\frac{\lambda+\alpha}{s}}}t^{\lambda _{2}-1}\,dt \\ =&\int_{0}^{\frac{V(\infty)}{U_{m}}}\prod _{k=1}^{s}\frac{(\min \{1,c_{k}t\})^{\frac{\alpha}{s}}}{(\max\{1,c_{k}t\})^{\frac{\lambda +\alpha}{s}}}t^{\lambda_{2}-1}\,dt \\ \leq&\int_{0}^{\infty}\prod _{k=1}^{s}\frac{(\min\{1,c_{k}t\})^{\frac {\alpha}{s}}}{(\max\{1,c_{k}t\})^{\frac{\lambda+\alpha }{s}}}t^{\lambda _{2}-1} \,dt=k_{s}(\lambda_{1}). \end{aligned}$$
Since \(U(x)\) is strictly increasing in \((m-1,m]\), \(-\alpha<\lambda _{1}\leq 1-\alpha\), \(\lambda_{2}>-\alpha\), by the same way, we have
$$\begin{aligned} \varpi(\lambda_{1},n) =&\sum_{m=1}^{\infty} \int_{m-1}^{m}\prod_{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}}\frac{V_{n}^{\lambda _{2}}U^{\prime}(x)}{U_{m}^{1-\lambda_{1}}}\,dx \\ < &\sum_{m=1}^{\infty}\int_{m-1}^{m} \prod_{k=1}^{s}\frac{(\min \{U(x),c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U(x),c_{k}V_{n}\} )^{\frac{\lambda+\alpha}{s}}} \frac{V_{n}^{\lambda_{2}}U^{\prime }(x)}{U^{1-\lambda _{1}}(x)}\,dx \\ \overset{t=U(x)/V_{n}}{=}&\sum_{m=1}^{\infty} \int_{\frac {U(m-1)}{V_{n}}}^{\frac{U(m)}{V_{n}}}\prod_{k=1}^{s} \frac{(\min\{t,c_{k}\})^{\frac {\alpha}{s}}}{(\max\{t,c_{k}\})^{\frac{\lambda+\alpha}{s}}}t^{\lambda_{1}-1}\,dt \\ =&\int_{0}^{\frac{U(\infty)}{V_{n}}}\prod _{k=1}^{s}\frac{(\min \{t,c_{k}\})^{\frac{\alpha}{s}}}{(\max\{t,c_{k}\})^{\frac{\lambda +\alpha }{s}}}t^{\lambda_{1}-1}\,dt\leq k_{s}(\lambda_{1}). \end{aligned}$$
Hence, we have (19) and (20). □
Lemma 3
If \(s\in\mathbf{N}\), \(0< c_{1}\leq\cdots\leq c_{s}\), \(-\alpha<\lambda_{1},\lambda_{2}\leq1-\alpha\), \(\lambda _{1}+\lambda_{2}=\lambda\), \(k_{s}(\lambda_{1})\) is indicated by (11), \(m_{0},n_{0}\in\mathbf{N}\), \(\mu_{m}\geq\mu_{m+1}\) (\(m\in \{m_{0},m_{0}+1,\ldots\}\)), \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in \{n_{0},n_{0}+1,\ldots\}\)), \(U(\infty)=V(\infty)=\infty\), then (i) for \(m,n\in\mathbf{N}\), we have
$$\begin{aligned}& k_{s}(\lambda_{1}) \bigl(1-\theta(\lambda_{2},m) \bigr) < \omega(\lambda _{2},m) \quad(-\alpha< \lambda_{2}\leq1- \alpha,\lambda_{1}>-\alpha), \end{aligned}$$
(22)
$$\begin{aligned}& k_{s}(\lambda_{1}) \bigl(1-\vartheta( \lambda_{1},n)\bigr) < \varpi(\lambda _{1},n)\quad (-\alpha< \lambda_{1}\leq1-\alpha,\lambda_{2}>-\alpha), \end{aligned}$$
(23)
where
$$\begin{aligned}& \theta(\lambda_{2},m) :=\frac{1}{k_{s}(\lambda_{1})}\int_{0}^{\frac {U_{m_{0}}}{V_{n}}} \prod_{k=1}^{s}\frac{(\min\{t,c_{k}\})^{\frac{\alpha }{s}}}{(\max\{t,c_{k}\})^{\frac{\lambda+\alpha}{s}}}t^{\lambda_{1}-1} \,dt =O\biggl(\frac{1}{U_{m}^{\lambda_{2}+\alpha}}\biggr)\in(0,1), \\& \vartheta(\lambda_{1},n) :=\frac{1}{k_{s}(\lambda_{1})}\int _{0}^{\frac{U_{m_{0}}}{V_{n}}}\prod_{k=1}^{s} \frac{(\min\{t,c_{k}\})^{\frac{\alpha }{s}}}{(\max\{t,c_{k}\})^{\frac{\lambda+\alpha}{s}}}t^{\lambda_{1}-1}\,dt =O\biggl(\frac{1}{V_{n}^{\lambda_{1}+\alpha}}\biggr)\in(0,1); \end{aligned}$$
(ii) for any \(b>0\), we have
$$\begin{aligned}& \sum_{m=1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+b}}= \frac{1}{b} \biggl( \frac {1}{U_{m_{0}}^{b}}+bO(1) \biggr) , \end{aligned}$$
(24)
$$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\upsilon_{n}}{V_{n}^{1+b}}= \frac{1}{b} \biggl( \frac{1}{V_{n_{0}}^{b}}+b\widetilde{O}(1) \biggr) . \end{aligned}$$
(25)
Proof
Since \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\geq n_{0}\)), \(-\alpha<\lambda_{2}\leq1-\alpha\), \(\lambda_{1}>-\alpha\) and \(V(\infty)=\infty\), by Lemma 1, we have
$$\begin{aligned} \omega(\lambda_{2},m) \geq&\sum_{n=n_{0}}^{\infty} \prod_{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \frac{U_{m}^{\lambda _{1}}}{V_{n}^{1-\lambda_{2}}}\upsilon_{n+1} \\ =&\sum_{n=n_{0}}^{\infty}\int_{n}^{n+1} \prod_{k=1}^{s}\frac{(\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\} )^{\frac{\lambda+\alpha}{s}}} \frac{U_{m}^{\lambda_{1}}V^{\prime}(y)}{V_{n}^{1-\lambda_{2}}}\,dy \\ >&\sum_{n=n_{0}}^{\infty}\int_{n}^{n+1} \prod_{k=1}^{s}\frac{(\{U_{m},c_{k}V(y)\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V(y)\} )^{\frac{\lambda+\alpha}{s}}} \frac{U_{m}^{\lambda_{1}}V^{\prime }(y)}{V^{1-\lambda _{2}}(y)}\,dy \\ =&\sum_{n=n_{0}}^{\infty}\int_{\frac{V(n)}{U_{m}}}^{\frac {V(n+1)}{U_{m}}} \prod_{k=1}^{s}\frac{(\min\{1,c_{k}t\})^{\frac{\alpha}{s}}}{(\max \{1,c_{k}t\})^{\frac{\lambda+\alpha}{s}}}t^{\lambda_{2}-1} \,dt \\ =&\int_{\frac{V_{n_{0}}}{U_{m}}}^{\infty}\prod _{k=1}^{s}\frac{(\min \{1,c_{k}t\})^{\frac{\alpha}{s}}t^{\lambda_{2}-1}}{(\max\{1,c_{k}t\} )^{\frac{\lambda+\alpha}{s}}}\,dt=k_{s}( \lambda_{1}) \bigl(1-\theta(\lambda _{2},m)\bigr). \end{aligned}$$
For \(U_{m}>c_{s}V_{n_{0}}\), we obtain \(c_{k}t\leq c_{s}t\leq c_{s}\frac{ V_{n_{0}}}{U_{m}}<1\) (\(t\in(0,\frac{V_{n_{0}}}{U_{m}}]\); \(k=1,\ldots,s\)) and
$$ \theta(\lambda_{2},m)=\frac{\prod_{k=1}^{s}c_{k}}{k_{s}(\lambda_{1})} \int _{0}^{\frac{V_{n_{0}}}{U_{m}}}t^{\lambda_{2}+\alpha-1}\,dt= \frac{\prod_{k=1}^{s}c_{k}}{(\lambda_{2}+\alpha)k_{s}(\lambda_{1})} \biggl( \frac{V_{n_{0}}}{U_{m}} \biggr) ^{\lambda_{2}+\alpha}, $$
and then \(\theta(\lambda_{2},m)=O(\frac{1}{U_{m}^{\lambda_{2}+\alpha}})\). Hence we have (22).
By the same way, since \(\mu_{m}\geq\mu_{m+1}\) (\(m\geq m_{0}\)), \(-\alpha <\lambda_{1}\leq1-\alpha\), \(\lambda_{2}>-\alpha\) and \(U(\infty )=\infty\), we have
$$\begin{aligned} \varpi(\lambda_{1},n) \geq&\sum_{m=m_{0}}^{\infty} \prod_{k=1}^{s}\frac {(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \frac{V_{n}^{\lambda _{2}}\mu_{m+1}}{U_{m}^{1-\lambda_{1}}}\\ =&\sum_{m=m_{0}}^{\infty}\int_{m}^{m+1} \prod_{k=1}^{s}\frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}} \frac{V_{n}^{\lambda_{2}}U^{\prime}(x)}{U_{m}^{1-\lambda_{1}}}\,dx \\ >&\sum_{m=m_{0}}^{\infty}\int_{m}^{m+1} \prod_{k=1}^{s}\frac{(\min \{U(x),c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U(x),c_{k}V_{n}\} )^{\frac{\lambda+\alpha}{s}}} \frac{V_{n}^{\lambda_{2}}U^{\prime }(x)}{U^{1-\lambda _{1}}(x)}\,dx \\ \overset{t=U(x)/V_{n}}{=}&\sum_{m=m_{0}}^{\infty} \int_{\frac {U(m)}{V_{n}}}^{\frac{U(m+1)}{V_{n}}}\prod_{k=1}^{s} \frac{(\min\{t,c_{k}\})^{\frac{\alpha}{s}}}{(\max\{t,c_{k}\})^{\frac{\lambda+\alpha}{s}}}t^{\lambda _{1}-1}\,dt \\ =&\int_{\frac{U_{m_{0}}}{V_{n}}}^{\infty}\prod _{k=1}^{s}\frac{(\min \{t,c_{k}\})^{\frac{\alpha}{s}}t^{\lambda_{1}-1}}{(\max\{t,c_{k}\})^{ \frac{\lambda+\alpha}{s}}}\,dt=k_{s}( \lambda_{1}) \bigl(1-\vartheta(\lambda _{1},n)\bigr). \end{aligned}$$
For \(V_{n}>c_{1}^{-1}U_{m_{0}}\), we obtain \(t\leq\frac {U_{m_{0}}}{V_{n}}< c_{1}\leq c_{k}\) (\(t\in(0,\frac{U_{m_{0}}}{V_{n}}]\); \(k=1,\ldots,s\)) and
$$ \vartheta(\lambda_{1},n)=\frac{\int_{0}^{\frac{U_{m_{0}}}{V_{n}}}t^{\lambda_{1}+\alpha-1}\,dt}{k_{s}(\lambda_{1})\prod_{k=1}^{s}c_{k}^{ \frac{\lambda+\alpha}{s}}}=\frac{(\lambda_{1}+\alpha)^{-1}}{k_{s}(\lambda_{1})\prod_{k=1}^{s}c_{k}^{\frac{\lambda+\alpha }{s}}} \biggl( \frac{U_{m_{0}}}{V_{n}} \biggr) ^{\lambda_{1}+\alpha}. $$
Hence, we have (23).
For \(b>0\), we find
$$\begin{aligned}& \begin{aligned}[b] \sum_{m=1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+b}}&=\sum _{m=1}^{m_{0}}\frac {\mu _{m}}{U_{m}^{1+b}}+\sum _{m=m_{0}+1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+b}}\\ &=\sum_{m=1}^{m_{0}}\frac{\mu_{m}}{U_{m}^{1+b}}+ \sum_{m=m_{0}+1}^{\infty }\int_{m-1}^{m} \frac{U^{\prime}(x)}{U_{m}^{1+b}}\,dx \\ &< \sum_{m=1}^{m_{0}}\frac{\mu_{m}}{U_{m}^{1+b}}+ \sum_{m=m_{0}+1}^{\infty }\int_{m-1}^{m} \frac{U^{\prime}(x)}{U^{1+b}(x)}\,dx\\ &=\sum_{m=1}^{m_{0}}\frac{\mu_{m}}{U_{m}^{1+b}}+ \int_{m_{0}}^{\infty} \frac{dU(x)}{U^{1+b}(x)}=\sum _{m=1}^{m_{0}}\frac{\mu_{m}}{U_{m}^{1+b}}+ \frac{1}{bU_{m_{0}}^{b}} \\ &=\frac{1}{b} \Biggl( \frac{1}{U_{m_{0}}^{b}}+b\sum _{m=1}^{m_{0}}\frac {\mu _{m}}{U_{m}^{1+b}} \Biggr) , \end{aligned}\\& \begin{aligned}[b] \sum_{m=1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+b}} &\geq \sum_{m=m_{0}}^{\infty}\frac{\mu_{m+1}}{U_{m}^{1+b}}=\sum _{m=m_{0}}^{ \infty}\int_{m}^{m+1} \frac{U^{\prime}(x)}{U_{m}^{1+b}}\,dx \\ &>\sum_{m=m_{0}}^{\infty}\int_{m}^{m+1} \frac{U^{\prime }(x)\,dx}{U^{1+b}(x)}=\int_{m_{0}}^{\infty} \frac{dU(x)}{U^{1+b}(x)}=\frac{1}{bU_{m_{0}}^{b}}. \end{aligned} \end{aligned}$$
Hence we have (24). By the same way, we still have (25). □
Note
For example, \(\mu_{m}=\frac{1}{m^{\sigma}}\), \(\upsilon _{n}=\frac{1}{n^{\sigma}}\) (\(0\leq\sigma\leq1\); \(m,n\in\mathbf{N}\)) satisfy the conditions of Lemma 3 (\(m_{0}=n_{0}=1\)).

3 Main results and operator expressions

Theorem 1
If \(s\in\mathbf{N}\), \(0< c_{1}\leq\cdots \leq c_{s}\), \(-\alpha<\lambda_{1},\lambda_{2}\leq1-\alpha\), \(\lambda _{1}+\lambda_{2}=\lambda\), \(k_{s}(\lambda_{1})\) is indicated by (11), then for \(p>1\), \(0<\|a\|_{p,\Phi_{\lambda}},\|b\|_{q,\Psi_{\lambda }}<\infty\), we have the following equivalent inequalities:
$$\begin{aligned}& I:=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\prod_{k=1}^{s} \frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}a_{m}b_{n}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}}< k_{s}(\lambda _{1})\|a \|_{p,\Phi_{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(26)
$$\begin{aligned}& J:= \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1-p\lambda _{2}}} \Biggl[ \sum_{m=1}^{\infty} \prod_{k=1}^{s}\frac{(\min\{ U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}a_{m}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda +\alpha }{s}}} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}}< k_{s}(\lambda _{1}) \|a\|_{p,\Phi _{\lambda}}. \end{aligned}$$
(27)
In particular, for \(s=1\) (or \(c_{s}=\cdots=c_{1}\)), we have the following equivalent inequalities:
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{(\min \{U_{m},c_{1}V_{n}\})^{\alpha}a_{m}b_{n}}{(\max \{U_{m},c_{1}V_{n}\})^{\lambda+\alpha}}< k_{1}( \lambda _{1})\|a\|_{p,\Phi _{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(28)
$$\begin{aligned}& \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1-p\lambda _{2}}} \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},c_{1}V_{n}\})^{\alpha }a_{m}}{(\max\{U_{m},c_{1}V_{n}\})^{\lambda+\alpha}} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}}< k_{1}( \lambda_{1})\|a\|_{p,\Phi_{\lambda}}, \end{aligned}$$
(29)
where \(k_{1}(\lambda_{1})\) is indicated by (12).
Proof
By Hölder’s inequality with weight (cf. [29]), we have
$$\begin{aligned} &\Biggl[ \sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min\{ U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}}a_{m} \Biggr] ^{p} \\ &\quad= \Biggl[ \sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}} \biggl( \frac{U_{m}^{\frac{1-\lambda_{1}}{q} }a_{m}}{V_{n}^{\frac{1-\lambda_{2}}{p}}\mu_{m}^{\frac{1}{q}}} \biggr) \biggl( \frac{V_{n}^{\frac{1-\lambda_{2}}{p}}\mu_{m}^{\frac {1}{q}}}{U_{m}^{\frac{1-\lambda_{1}}{q}}} \biggr) \Biggr] ^{p} \\ &\quad\leq\sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min\{ U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}} \biggl( \frac{U_{m}^{(1-\lambda_{1})p/q}}{V_{n}^{1-\lambda_{2}}\mu _{m}^{p/q}}a_{m}^{p} \biggr) \\ &\qquad{}\times \Biggl[ \sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}} \frac{V_{n}^{(1-\lambda_{2})(q-1)}\mu _{m}}{U_{m}^{1-\lambda_{1}}} \Biggr] ^{p-1} \\ &\quad=\frac{V_{n}^{1-p\lambda_{2}}}{(\varpi(\lambda _{1},n))^{1-p}\upsilon _{n}}\sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\} )^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}}\frac{U_{m}^{(1-\lambda_{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda _{2}}\mu _{m}^{p-1}}a_{m}^{p}. \end{aligned}$$
(30)
In view of (20), we find
$$\begin{aligned} J \leq&\bigl(k_{s}(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl[ \sum_{n=1}^{\infty }\sum _{m=1}^{\infty}\prod_{k=1}^{s} \frac{(\min\{U_{m},c_{k}V_{n}\} )^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}}\frac{U_{m}^{(1-\lambda_{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu _{m}^{p-1}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k_{s}(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl[ \sum_{m=1}^{\infty }\sum _{n=1}^{\infty}\prod_{k=1}^{s} \frac{(\min\{U_{m},c_{k}V_{n}\} )^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}}\frac{U_{m}^{(1-\lambda_{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu _{m}^{p-1}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k_{s}(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl[ \sum_{m=1}^{\infty}\omega (\lambda_{2},m) \frac{U_{m}^{p(1-\lambda_{1})-1}}{\mu _{m}^{p-1}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned}$$
(31)
Then, by (19), we have (27).
By Hölder’s inequality (cf. [29]), we have
$$\begin{aligned} I =&\sum_{n=1}^{\infty} \Biggl[ \frac{\upsilon_{n}^{\frac {1}{p}}}{V_{n}^{\frac{1}{p}-\lambda_{2}}}\sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}a_{m}}{(\max\{ U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \Biggr] \biggl( \frac{V_{n}^{\frac {1}{p}-\lambda _{2}}}{\upsilon_{n}^{\frac{1}{p}}}b_{n} \biggr) \\ \leq&J\|b\|_{q,\Psi_{\lambda}}. \end{aligned}$$
(32)
Then, by (27), we have (26).
On the other hand, assuming that (26) is valid, we set
$$ b_{n}:=\frac{\upsilon_{n}}{V_{n}^{1-p\lambda_{2}}} \Biggl[ \sum_{m=1}^{\infty} \prod_{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\} )^{\frac{\alpha}{s}}a_{m}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}} \Biggr] ^{p-1},\quad n\in\mathbf{N}. $$
Then we find \(J^{p}=\|b\|_{q,\Psi_{\lambda}}^{q}\). If \(J=0\), then (27) is trivially valid; if \(J=\infty\), then, by (31) and (19), it is impossible. Suppose that \(0< J<\infty\). By (26), it follows that
$$\begin{aligned}& \|b\|_{q,\Psi_{\lambda}}^{q} =J^{p}=I< k_{s}( \lambda _{1})\|a\|_{p,\Phi _{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \\& \|b\|_{q,\Psi_{\lambda}}^{q-1} =J< k_{s}(\lambda_{1}) \|a\|_{p,\Phi _{\lambda}}, \end{aligned}$$
and then (27) follows, which is equivalent to (26). □
Theorem 2
With the assumptions of Theorem  1, if \(m_{0},n_{0}\in \mathbf{N}\), \(\mu_{m}\geq\mu_{m+1}\) (\(m\in\{m_{0},m_{0}+1,\ldots\}\)), \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots \}\)), \(U(\infty)=V(\infty)=\infty\), then the constant factor \(k_{s}(\lambda_{1})\) in (26) and (27) is the best possible.
Proof
For \(\varepsilon\in(0,p(\lambda_{1}+\alpha))\), we set \(\widetilde{\lambda}_{1}=\lambda_{1}-\frac{\varepsilon}{p}\) (\({\in} (-\alpha ,1-\alpha)\)), \(\widetilde{\lambda}_{2}=\lambda_{2}+\frac{\varepsilon }{p}\) (\({>}-\alpha\)), and \(\widetilde{a}=\{\widetilde{a}_{m}\}_{m=1}^{\infty}\), \(\widetilde{b}=\{\widetilde{b}_{n}\}_{n=1}^{\infty}\),
$$ \widetilde{a}_{m}:=U_{m}^{\widetilde{\lambda}_{1}-1}\mu _{m}=U_{m}^{\lambda _{1}-\frac{\varepsilon}{p}-1}\mu_{m},\qquad\widetilde {b}_{n}=V_{n}^{\widetilde{\lambda}_{2}-\varepsilon-1}\upsilon_{n}=V_{n}^{\lambda_{2}-\frac{\varepsilon}{q}-1} \upsilon_{n}. $$
(33)
Then, by (24), (25) and (23), we have
$$\begin{aligned}& \begin{aligned}[b] \|\widetilde{a}\|_{p,\Phi_{\lambda}}\|\widetilde{b}\|_{q,\Psi _{\lambda }}&= \Biggl( \sum _{m=1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+\varepsilon }} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}} \Biggr) ^{\frac{1}{q}}\\ &=\frac{1}{\varepsilon} \biggl( \frac{1}{U_{m_{0}}^{\varepsilon }}+\varepsilon O(1) \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\widetilde{O}(1) \biggr) ^{\frac{1}{q}}, \end{aligned}\\& \begin{aligned}[b] \widetilde{I} &:=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \widetilde{a}_{m}\widetilde{b}_{n} \\ &=\sum_{n=1}^{\infty} \Biggl[ \sum _{m=1}^{\infty}\prod_{k=1}^{s} \frac {(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}}\frac{V_{n}^{\widetilde{\lambda}_{2}}\mu _{m}}{U_{m}^{1-\widetilde{\lambda}_{1}}} \Biggr] \frac{\upsilon_{n}}{V_{n}^{\varepsilon+1}} \\ &=\sum_{n=1}^{\infty}\varpi(\widetilde{ \lambda}_{1},n)\frac {\upsilon_{n}}{V_{n}^{\varepsilon+1}}\geq k_{s}(\widetilde{ \lambda}_{1})\sum_{n=1}^{\infty} \bigl(1-\vartheta(\widetilde{\lambda}_{1},n)\bigr)\frac{\upsilon_{n}}{V_{n}^{\varepsilon+1}} \\ &=k_{s}(\widetilde{\lambda}_{1}) \Biggl( \sum _{n=1}^{\infty}\frac {\upsilon _{n}}{V_{n}^{\varepsilon+1}}-\sum _{n=1}^{\infty}O\biggl(\frac{\upsilon _{n}}{V_{n}^{\frac{\varepsilon}{q}+\lambda_{1}+\alpha+1}}\biggr) \Biggr) \\ &=\frac{1}{\varepsilon}k_{s}(\widetilde{\lambda}_{1}) \biggl[ \frac{1}{ V_{n_{0}}^{\varepsilon}}+\varepsilon\bigl(\widetilde{O}(1)-O(1)\bigr) \biggr] . \end{aligned} \end{aligned}$$
If there exists a positive constant \(K\leq k_{s}(\lambda_{1})\) such that (26) is valid when replacing \(k_{s}(\lambda_{1})\) with K, then, in particular, we have \(\varepsilon\widetilde{I}<\varepsilon K\|\widetilde {a}\|_{p,\Phi_{\lambda}}\|\widetilde{b}\|_{q,\Psi_{\lambda}}\), namely
$$\begin{aligned} &k_{s}(\widetilde{\lambda}_{1}) \biggl[ \frac{1}{V_{n_{0}}^{\varepsilon }}+\varepsilon\bigl(\widetilde{O}(1)-O(1)\bigr) \biggr] < K \biggl( \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{ \frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon \widetilde{O}(1) \biggr) ^{\frac{1}{q}}. \end{aligned}$$
It follows that \(k_{s}(\lambda_{1})\leq K(\varepsilon\rightarrow0^{+})\). Hence, \(K=k_{s}(\lambda_{1})\) is the best possible constant factor of (26).
The constant factor \(k_{s}(\lambda_{1})\) in (27) is still the best possible. Otherwise, we would reach a contradiction by (32) that the constant factor in (26) is not the best possible. □
Remark 1
Inequality (26) is an extension of Hardy-Hilbert-type inequality (28) with parameters and a best possible constant factor.
For \(p>1\), we find \(\Psi_{\lambda}^{1-p}(n)=\frac{\upsilon_{n}}{V_{n}^{1-p\lambda_{2}}}\) and define the following normed spaces:
$$\begin{aligned}& l_{p,\Phi_{\lambda}} :=\bigl\{ a=\{a_{m}\}_{m=1}^{\infty}; \|a\|_{p,\Phi _{\lambda}}< \infty\bigr\} , \\& l_{q,\Psi_{\lambda}} :=\bigl\{ b=\{b_{n}\}_{n=1}^{\infty}; \|b\|_{q,\Psi _{\lambda}}< \infty\bigr\} , \\& l_{p,\Psi_{\lambda}^{1-p}} :=\bigl\{ c=\{c_{n}\}_{n=1}^{\infty }; \|c\|_{p,\Psi _{\lambda}^{1-p}}< \infty\bigr\} . \end{aligned}$$
Assuming that \(a=\{a_{m}\}_{m=1}^{\infty}\in l_{p,\Phi_{\lambda}}\), setting
$$ c=\{c_{n}\}_{n=1}^{\infty},\qquad c_{n}:=\sum _{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}}a_{m},\quad n\in \mathbf{N}, $$
we can rewrite (27) as follows:
$$ \|c\|_{p,\Psi_{\lambda}^{1-p}}< k_{s}(\lambda_{1})\|a \|_{p,\Phi _{\lambda }}< \infty, $$
namely \(c\in l_{p,\Psi_{\lambda}^{1-p}}\).
Definition 1
Define a Hardy-Hilbert-type operator \(T:l_{p,\Phi _{\lambda}}\rightarrow l_{p,\Psi_{\lambda}^{1-p}}\) as follows: For any \(a=\{a_{m}\}_{m=1}^{\infty}\in l_{p,\Phi_{\lambda}}\), there exists a unique representation \(Ta=c\in l_{p,\Psi_{\lambda}^{1-p}}\). Define the formal inner product of Ta and \(b=\{b_{n}\}_{n=1}^{\infty}\in l_{q,\Psi _{\lambda}}\) as follows:
$$ (Ta,b):=\sum_{n=1}^{\infty} \Biggl[ \sum _{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}}a_{m} \Biggr] b_{n}. $$
(34)
Then we can rewrite (26) and (27) as follows:
$$\begin{aligned}& (Ta,b) < k_{s}(\lambda_{1})\|a\|_{p,\Phi_{\lambda}}\|b \|_{q,\Psi _{\lambda}}, \end{aligned}$$
(35)
$$\begin{aligned}& \|Ta\|_{p,\Psi_{\lambda}^{1-p}} < k_{s}(\lambda_{1})\|a \|_{p,\Phi _{\lambda}}. \end{aligned}$$
(36)
Define the norm of operator T as follows:
$$ \|T\|:=\sup_{a(\neq\theta)\in l_{p,\Phi_{\lambda}}}\frac {\|Ta\|_{p,\Psi _{\lambda}^{1-p}}}{\|a\|_{p,\Phi_{\lambda}}}. $$
(37)
Then, by (36), we find \(\|T\|\leq k_{s}(\lambda_{1})\). Since by Theorem 2 the constant factor in (36) is the best possible, we have
$$ \|T\|=k_{s}(\lambda_{1}). $$
(38)

4 Some reverses

In the following, we also set
$$\begin{aligned}& \widetilde{\Phi}_{\lambda}(m) :=\bigl(1-\theta(\lambda_{2},m) \bigr)\frac{U_{m}^{p(1-\lambda_{1})-1}}{\mu_{m}^{p-1}}, \\& \widetilde{\Psi}_{\lambda}(n) :=\bigl(1-\vartheta(\lambda_{1},n) \bigr)\frac{ V_{n}^{q(1-\lambda_{2})-1}}{\upsilon_{n}^{q-1}}\quad(m,n\in\mathbf{N}). \end{aligned}$$
For \(0< p<1\) or \(p<0\), we still use the formal symbols of \(\|a\|_{p,\Phi _{\lambda}}\), \(\|b\|_{q,\Psi_{\lambda}}\), \(\|a\|_{p,\widetilde{\Phi} _{\lambda}}\) and \(\|b\|_{q,\widetilde{\Psi}_{\lambda}}\).
Theorem 3
If \(s\in\mathbf{N}\), \(0< c_{1}\leq\cdots\leq c_{s}\), \(-\alpha<\lambda_{1},\lambda_{2}\leq1-\alpha\), \(\lambda _{1}+\lambda_{2}=\lambda\), \(k_{s}(\lambda_{1})\) is indicated by (11), \(m_{0},n_{0}\in\mathbf{N}\), \(\mu_{m}\geq\mu_{m+1}\) (\(m\in \{m_{0},m_{0}+1,\ldots\}\)), \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in \{n_{0},n_{0}+1,\ldots\}\)), \(U(\infty)=V(\infty)=\infty\), then for \(0< p<1\), \(0<\|a\|_{p,\Phi_{\lambda}},\|b\|_{q,\Psi_{\lambda }}<\infty \), we have the following equivalent inequalities with the best possible constant factor \(k_{s}(\lambda_{1})\):
$$\begin{aligned}& \begin{aligned}[b] I &=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\prod_{k=1}^{s} \frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}a_{m}b_{n}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}}\\ &>k_{s}(\lambda _{1})\|a \|_{p,\widetilde{\Phi}_{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned} \end{aligned}$$
(39)
$$\begin{aligned}& \begin{aligned}[b] J &= \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1-p\lambda _{2}}} \Biggl[ \sum_{m=1}^{\infty} \prod_{k=1}^{s}\frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}a_{m}}{(\max\{ U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \\ &>k_{s}(\lambda_{1})\|a\|_{p,\widetilde{\Phi}_{\lambda}}. \end{aligned} \end{aligned}$$
(40)
Proof
By the reverse Hölder’s inequality (cf. [29]) and (20), we have the reverses of (30), (31) and (32). Then, by (22), we have (40). By (40) and the reverse of (32), we have (39).
On the other hand, assuming that (39) is valid, we set \(b_{n}\) as in Theorem 1. Then we find \(J^{p}=\|b\|_{q,\Psi_{\lambda}}^{q}\). If \(J=\infty \), then (40) is trivially valid; if \(J=0\), then, by reverse of (31) and (22), it is impossible. Suppose that \(0< J<\infty\). By (39), it follows that
$$\begin{aligned}& \|b\|_{q,\Psi_{\lambda}}^{q} =J^{p}=I>k_{s}( \lambda_{1})\|a\|_{p,\widetilde{\Phi}_{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \\& \|b\|_{q,\Psi_{\lambda}}^{q-1} =J>k_{s}(\lambda _{1})\|a\|_{p,\widetilde{\Phi}_{\lambda}}, \end{aligned}$$
and then (40) follows, which is equivalent to (39).
For \(\varepsilon\in(0,p(\lambda_{1}+\alpha))\), we set \(\widetilde{\lambda}_{1}\), \(\widetilde{\lambda}_{2}\), \(\widetilde{a}_{m}\) and \(\widetilde{b}_{n}\) as (33). Then, by (24), (25) and (20), we find
$$\begin{aligned}& \begin{aligned}[b] \|a\|_{p,\widetilde{\Phi}_{\lambda}}\|b\|_{q,\Psi_{\lambda}}&= \Biggl[ \sum _{m=1}^{\infty}\bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\mu_{m}}{U_{m}^{1+\varepsilon}} \Biggr] ^{\frac{1}{p}} \Biggl( \sum _{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}} \Biggr) ^{\frac{1}{q}}\\ &= \Biggl( \sum_{m=1}^{\infty} \frac{\mu_{m}}{U_{m}^{1+\varepsilon}}-\sum_{m=1}^{\infty}O \biggl(\frac{\mu_{m}}{U_{m}^{1+\lambda_{2}+\alpha +\varepsilon}}\biggr) \Biggr) ^{\frac{1}{p}} \Biggl( \sum _{n=1}^{\infty}\frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}} \Biggr) ^{\frac{1}{q}} \\ &=\frac{1}{\varepsilon} \biggl[ \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon \bigl(O(1)-O_{1}(1)\bigr) \biggr] ^{\frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\widetilde{O}(1) \biggr) ^{\frac{1}{q}}, \end{aligned}\\& \begin{aligned}[b] \widetilde{I}&=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\prod_{k=1}^{s} \frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}}\widetilde{a}_{m}\widetilde{b}_{n}\\ &=\sum_{n=1}^{\infty} \Biggl[ \sum _{m=1}^{\infty}\prod_{k=1}^{s} \frac {(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}}\frac{V_{n}^{\widetilde{\lambda}_{2}}\mu _{m}}{U_{m}^{1-\widetilde{\lambda}_{1}}} \Biggr] \frac{\upsilon_{n}}{V_{n}^{\varepsilon+1}} \\ &=\sum_{n=1}^{\infty}\varpi(\widetilde{ \lambda}_{1},n)\frac {\upsilon_{n}}{V_{n}^{\varepsilon+1}}\leq k_{s}(\widetilde{ \lambda}_{1})\sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{\varepsilon+1}} \\ &=\frac{1}{\varepsilon}k_{s}(\widetilde{\lambda}_{1}) \biggl( \frac{1}{ V_{n_{0}}^{\varepsilon}}+\varepsilon\widetilde{O}(1) \biggr) . \end{aligned} \end{aligned}$$
If there exists a constant \(K\geq k_{s}(\lambda_{1})\) such that (39) is valid when replacing \(k_{s}(\lambda_{1})\) with K, then, in particular, we have \(\varepsilon\widetilde{I}>\varepsilon K\|\widetilde{a}\|_{p,\widetilde{\Phi}_{\lambda}}\|\widetilde{b}\|_{q,\Psi_{\lambda}}\), namely
$$\begin{aligned} &k_{s}(\widetilde{\lambda}_{1}) \biggl( \frac{1}{V_{n_{0}}^{\varepsilon }}+\varepsilon\widetilde{O}(1) \biggr) >K \biggl[ \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon \bigl(O(1)-O_{1}(1) \bigr) \biggr] ^{\frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon }}+\varepsilon \widetilde{O}(1) \biggr) ^{\frac{1}{q}}. \end{aligned}$$
It follows that \(k_{s}(\lambda_{1})\geq K\) (\(\varepsilon\rightarrow0^{+}\)). Hence, \(K=k_{s}(\lambda_{1})\) is the best possible constant factor of (39).
The constant factor \(k_{s}(\lambda_{1})\) in (40) is still the best possible. Otherwise, we would reach a contradiction by the reverse of (32) that the constant factor in (39) is not the best possible. □
Theorem 4
With the assumptions of Theorem  3, if \(p<0\), then we have the following equivalent inequalities with the best possible constant factor \(k_{s}(\lambda_{1})\):
$$\begin{aligned}& I =\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\prod_{k=1}^{s} \frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}a_{m}b_{n}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}}>k_{s}(\lambda _{1})\|a \|_{p,\Phi_{\lambda}}\|b\|_{q,\widetilde{\Psi}_{\lambda}}, \end{aligned}$$
(41)
$$\begin{aligned}& \begin{aligned}[b] J_{1} &:= \Biggl\{ \sum_{n=1}^{\infty} \frac{V_{n}^{p\lambda _{2}-1}\upsilon _{n}}{(1-\vartheta(\lambda_{1},n))^{p-1}} \Biggl[ \sum_{m=1}^{\infty } \prod_{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha }{s}}a_{m}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \\ &>k_{s}(\lambda_{1})\|a\|_{p,\Phi_{\lambda}}. \end{aligned} \end{aligned}$$
(42)
Proof
By the reverse Hölder’s inequality with weight (cf. [29]), since \(p<0\), by (23), we have
$$\begin{aligned} & \Biggl[ \sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}a_{m}}{(\max\{ U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \Biggr] ^{p} \\ &\quad= \Biggl[ \sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}} \biggl( \frac{U_{m}^{(1-\lambda_{1})/q}}{V_{n}^{(1-\lambda_{2})/p}\mu_{m}^{1/q}}a_{m} \biggr) \biggl( \frac{V_{n}^{(1-\lambda_{2})/p}\mu_{m}^{1/q}}{U_{m}^{(1-\lambda _{1})/q}} \biggr) \Biggr] ^{p} \\ &\quad\leq\sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min\{ U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}}\frac{U_{m}^{(1-\lambda_{1})p/q}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p/q}} a_{m}^{p} \\ &\qquad{}\times \Biggl[ \sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}} \frac{V_{n}^{(1-\lambda_{2})(q-1)}\mu _{m}}{U_{m}^{1-\lambda_{1}}} \Biggr] ^{p-1} \\ &\quad=\frac{V_{n}^{1-p\lambda_{2}}}{(\varpi(\lambda_{1},n))^{1-p}}\sum_{m=1}^{\infty} \prod_{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\} )^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}} \frac{U_{m}^{(1-\lambda_{1})(p-1)}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p-1}}a_{m}^{p} \\ &\quad\leq\frac{(k_{s}(\lambda_{1}))^{p-1}V_{n}^{1-p\lambda_{2}}}{(1-\vartheta(\lambda_{1},n))^{1-p}\upsilon_{n}}\sum_{m=1}^{\infty} \prod_{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha }{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \frac {U_{m}^{(1-\lambda _{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p-1}}a_{m}^{p}, \\ &J_{1} \geq\bigl(k_{s}(\lambda_{1}) \bigr)^{\frac{1}{q}} \Biggl\{ \sum_{n=1}^{\infty } \sum_{m=1}^{\infty}\prod _{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\} )^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}}\frac{U_{m}^{(1-\lambda_{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu _{m}^{p-1}}a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\hphantom{J_{1}}=\bigl(k_{s}(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl\{ \sum_{m=1}^{\infty }\sum _{n=1}^{\infty}\prod_{k=1}^{s} \frac{(\min\{U_{m},c_{k}V_{n}\} )^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha }{s}}}\frac{U_{m}^{(1-\lambda_{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu _{m}^{p-1}}a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\hphantom{J_{1}}=\bigl(k_{s}(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl\{ \sum_{m=1}^{\infty}\omega (\lambda_{2},m) \frac{U_{m}^{p(1-\lambda_{1})-1}}{\mu_{m}^{p-1}}a_{m}^{p} \Biggr\} ^{\frac{1}{p}}. \end{aligned}$$
(43)
Then, by (19), we have (44).
By the reverse Hölder’s inequality (cf. [29]), we have
$$\begin{aligned} I&=\sum_{n=1}^{\infty}\frac{V_{n}^{\lambda_{2}-\frac{1}{p}}\upsilon _{n}^{1/p}}{(1-\vartheta(\lambda_{1},n))^{1/q}} \Biggl[ \sum_{m=1}^{\infty }\prod _{k=1}^{s}\frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha }{s}}a_{m}}{(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \Biggr]\biggl[ \bigl(1-\vartheta(\lambda_{1},n)\bigr)^{\frac{1}{q}} \frac {V_{n}^{\frac{1}{p}-\lambda_{2}}}{\upsilon_{n}^{1/p}}b_{n} \biggr] \\ & \geq J_{1}\|b \|_{q,\widetilde{\Psi}_{\lambda}}. \end{aligned}$$
(44)
Then, by (42), we have (41).
On the other hand, assuming that (41) is valid, we set \(b_{n}\) as follows:
$$ b_{n}:=\frac{V_{n}^{p\lambda_{2}-1}\upsilon_{n}}{(1-\vartheta(\lambda _{1},n))^{p-1}} \Biggl[ \sum_{m=1}^{\infty} \prod_{k=1}^{s}\frac{(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}a_{m}}{(\max\{ U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \Biggr] ^{p-1},\quad n\in\mathbf{N}. $$
Then we find \(J_{1}^{p}=\|b\|_{q,\widetilde{\Psi}_{\lambda}}^{q}\). If \(J_{1}=\infty\), then (42) is trivially valid; if \(J_{1}=0\), then by (43) and (19) it is impossible. Suppose that \(0< J_{1}<\infty \). By (41), it follows that
$$\begin{aligned}& \|b\|_{q,\widetilde{\Psi}_{\lambda}}^{q} =J_{1}^{p}=I>k_{s}( \lambda _{1})\|a\|_{p,\Phi_{\lambda}}\|b\|_{q,\widetilde{\Psi}_{\lambda}},\\& \|b\|_{q,\widetilde{\Psi}_{\lambda}}^{q-1} =J_{1}>k_{s}( \lambda _{1})\|a\|_{p,\Phi_{\lambda}}, \end{aligned}$$
and then (42) follows, which is equivalent to (41).
For \(\varepsilon\in(0,q(\lambda_{2}+\alpha))\), we set \(\widetilde{\lambda}_{1}=\lambda_{1}+\frac{\varepsilon}{q}\) (\({>}-\alpha\)), \(\widetilde{ \lambda}_{2}=\lambda_{2}-\frac{\varepsilon}{q}\) (\({\in}(-\alpha ,1-\alpha)\)), and
$$ \widetilde{a}_{m}:=U_{m}^{\widetilde{\lambda}_{1}-1-\varepsilon}\mu _{m}=U_{m}^{\lambda_{1}-\frac{\varepsilon}{p}-1}\mu_{m}, \qquad\widetilde{b} _{n}=V_{n}^{\widetilde{\lambda}_{2}-1}\upsilon_{n}=V_{n}^{\lambda _{2}-\frac{\varepsilon}{q}-1} \upsilon_{n}. $$
Then, by (24), (25) and (19), we have
$$\begin{aligned}& \begin{aligned}[b] \|\widetilde{a}\|_{p,\Phi_{\lambda}}\|\widetilde{b}\|_{q,\widetilde {\Psi}_{\lambda}}&= \Biggl( \sum _{m=1}^{\infty}\frac{\mu _{m}}{U_{m}^{1+\varepsilon }} \Biggr) ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty} \bigl(1-\vartheta(\lambda _{1},n)\bigr)\frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}} \Biggr] ^{\frac{1}{q}} \\ &= \Biggl( \sum_{m=1}^{\infty} \frac{\mu_{m}}{U_{m}^{1+\varepsilon }} \Biggr) ^{\frac{1}{p}} \Biggl( \sum _{n=1}^{\infty}\frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}}-\sum _{n=1}^{\infty}O\biggl(\frac{\upsilon_{n}}{V_{n}^{1+\lambda_{1}+\alpha+\varepsilon}}\biggr) \Biggr) ^{\frac{1}{q}} \\ &=\frac{1}{\varepsilon} \biggl( \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{\frac{1}{p}} \biggl[ \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\bigl( \widetilde{O}(1)-O_{1}(1)\bigr) \biggr] ^{\frac{1}{q}}, \end{aligned}\\& \begin{aligned}[b] \widetilde{I} &=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\prod _{k=1}^{s} \frac{(\min\{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda+\alpha}{s}}} \widetilde{a}_{m}\widetilde{b}_{n} \\ &=\sum_{m=1}^{\infty} \Biggl[ \sum _{n=1}^{\infty}\prod_{k=1}^{s} \frac {(\min \{U_{m},c_{k}V_{n}\})^{\frac{\alpha}{s}}}{(\max\{U_{m},c_{k}V_{n}\})^{ \frac{\lambda+\alpha}{s}}}\frac{U_{m}^{\widetilde{\lambda }_{1}}\upsilon _{n}}{V_{n}^{1-\widetilde{\lambda}_{2}}} \Biggr] \frac{\mu_{m}}{U_{m}^{1+\varepsilon}} \\ &=\sum_{m=1}^{\infty}\omega(\widetilde{ \lambda}_{2},m)\frac{\mu _{m}}{U_{m}^{1+\varepsilon}}\leq k_{s}(\widetilde{ \lambda}_{1})\sum_{n=1}^{\infty} \frac{\mu_{m}}{U_{m}^{1+\varepsilon}} \\ &=\frac{1}{\varepsilon}k_{s}(\widetilde{\lambda}_{1}) \biggl( \frac{1}{ U_{m_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) . \end{aligned} \end{aligned}$$
If there exists a constant \(K\geq k_{s}(\lambda_{1})\) such that (41) is valid when replacing \(k_{s}(\lambda_{1})\) with K, then, in particular, we have \(\varepsilon\widetilde{I}>\varepsilon K\|\widetilde {a}\|_{p,\Phi _{\lambda}}\|\widetilde{b}\|_{q,\widetilde{\Psi}_{\lambda}}\), namely
$$\begin{aligned} &k_{s}(\widetilde{\lambda}_{1}) \biggl( \frac{1}{U_{m_{0}}^{\varepsilon }}+\varepsilon O(1) \biggr) \\ &\quad>K \biggl( \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{ \frac{1}{p}} \biggl[ \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\bigl(\widetilde{O}(1)-O_{1}(1) \bigr) \biggr] ^{\frac{1}{q}}. \end{aligned}$$
It follows that \(k_{s}(\lambda_{1})\geq K\) (\(\varepsilon\rightarrow0^{+}\)). Hence, \(K=k_{s}(\lambda_{1})\) is the best possible constant factor of (41).
The constant factor \(k_{s}(\lambda_{1})\) in (42) is still the best possible. Otherwise, we would reach a contradiction by (44) that the constant factor in (41) is not the best possible. □
Remark 2
(i) For \(\alpha=0\), \(0<\lambda _{1},\lambda_{2}\leq1\) in (26) and (27), we have the following equivalent inequalities:
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{\prod_{k=1}^{s}(\max\{U_{m},c_{k}V_{n}\})^{\frac{\lambda }{s}}}< \widetilde{k}_{s}( \lambda_{1})\|a\|_{p,\Phi_{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(45)
$$\begin{aligned}& \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1-p\lambda _{2}}} \Biggl[ \sum_{m=1}^{\infty} \frac{a_{m}}{\prod_{k=1}^{s}(\max \{U_{m},c_{k}V_{n}\})^{\frac{\lambda}{s}}} \Biggr] ^{p} \Biggr\} ^{\frac {1}{p}}< \widetilde{k}_{s}(\lambda_{1})\|a\|_{p,\Phi_{\lambda}}, \end{aligned}$$
(46)
where \(\widetilde{k}_{s}(\lambda_{1})\) is indicated by (14);
(ii) for \(\alpha=-\lambda\), \(-1\leq\lambda_{1},\lambda_{2}<0\) in (26) and (27), we have the following equivalent inequalities:
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{\prod_{k=1}^{s}(\min\{U_{m},c_{k}V_{n}\})^{\frac{\lambda }{s}}}< \widehat{k}_{s}( \lambda_{1})\|a\|_{p,\Phi_{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(47)
$$\begin{aligned}& \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1-p\lambda _{2}}} \Biggl[ \sum_{m=1}^{\infty} \frac{a_{m}}{\prod_{k=1}^{s}(\min \{U_{m},c_{k}V_{n}\})^{\frac{\lambda}{s}}} \Biggr] ^{p} \Biggr\} ^{\frac {1}{p}}< \widehat{k}_{s}(\lambda_{1})\|a\|_{p,\Phi_{\lambda}}, \end{aligned}$$
(48)
where \(\widehat{k}_{s}(\lambda_{1})\) is indicated by (15);
(iii) for \(\lambda=0\), \(\lambda_{2}=-\lambda_{1}\), in (26) and (27), we have the following equivalent inequalities:
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\prod_{k=1}^{s} \biggl( \frac{\min \{U_{m},c_{k}V_{n}\}}{\max\{U_{m},c_{k}V_{n}\}} \biggr) ^{\frac{\alpha }{s}}a_{m}b_{n}< k_{s}^{(0)}( \lambda_{1})\|a\|_{p,\Phi_{\lambda }}\|b\|_{q,\Psi _{\lambda}}, \end{aligned}$$
(49)
$$\begin{aligned}& \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1+p\lambda _{1}}} \Biggl[ \sum_{m=1}^{\infty} \prod_{k=1}^{s} \biggl( \frac{\min \{U_{m},c_{k}V_{n}\}}{\max\{U_{m},c_{k}V_{n}\}} \biggr) ^{\frac{\alpha }{s}}a_{m} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}}< k_{s}^{(0)}(\lambda _{1})\|a \|_{p,\Phi_{\lambda}}, \end{aligned}$$
(50)
where \(k_{s}^{(0)}(\lambda_{1})\) is indicated by (16) (\(|\lambda _{1}|<\alpha\), \(0<\alpha\leq\frac{1}{2}\); \(|\lambda_{1}|<1-\alpha\), \(\frac {1}{2}<\alpha\leq1\)).
By Theorem 2, the constant factors in the above inequalities are all the best possible. We still can obtain some particular reverse inequalities with the best possible constant factors by Theorem 3 and Theorem 4.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61370186), and the Science and Technology Planning Project of Guangzhou (No. 2014J4100032, No. 201510010203). We are grateful for their help.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. QC participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.
Literature
1.
go back to reference Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934) Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)
2.
go back to reference Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) MATHCrossRef Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) MATHCrossRef
3.
go back to reference Yang, BC: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., Sharjah (2009) Yang, BC: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., Sharjah (2009)
4.
go back to reference Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd., Sharjah (2011) Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd., Sharjah (2011)
5.
go back to reference Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009) Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
6.
go back to reference Yang, BC: Two Types of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012) Yang, BC: Two Types of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012)
7.
go back to reference Persson, LE, et al.: Commutators of Hardy operators in vanishing Morrey spaces. In: 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences (ICNPAA 2012). AIP Conference Proceedings, vol. 1493, pp. 859-866 (2012). doi:10.1063/1.4765588 Persson, LE, et al.: Commutators of Hardy operators in vanishing Morrey spaces. In: 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences (ICNPAA 2012). AIP Conference Proceedings, vol. 1493, pp. 859-866 (2012). doi:10.​1063/​1.​4765588
9.
go back to reference Yang, BC, Brnetić, I, Krnić, M, Pečarić, JE: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005) MATHMathSciNet Yang, BC, Brnetić, I, Krnić, M, Pečarić, JE: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005) MATHMathSciNet
10.
go back to reference Krnić, M, Pečarić, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005) MATH Krnić, M, Pečarić, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005) MATH
11.
go back to reference Yang, BC, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003) MATHMathSciNet Yang, BC, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003) MATHMathSciNet
12.
go back to reference Yang, BC, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010) MATHMathSciNetCrossRef Yang, BC, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010) MATHMathSciNetCrossRef
13.
go back to reference Azar, L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2009, Article ID 546829 (2009) MathSciNet Azar, L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2009, Article ID 546829 (2009) MathSciNet
14.
go back to reference Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006) Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006)
15.
go back to reference Kuang, JC, Debnath, L: On Hilbert’s type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95-103 (2007) MATHMathSciNet Kuang, JC, Debnath, L: On Hilbert’s type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95-103 (2007) MATHMathSciNet
16.
go back to reference Zhong, WY: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J. Inequal. Appl. 2008, Article ID 917392 (2008) CrossRef Zhong, WY: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J. Inequal. Appl. 2008, Article ID 917392 (2008) CrossRef
17.
go back to reference Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), 92 (2005) MathSciNet Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), 92 (2005) MathSciNet
19.
go back to reference Yang, BC, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011) MathSciNet Yang, BC, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011) MathSciNet
20.
go back to reference Krnić, M, Pečarić, JE, Vuković, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008) MATHMathSciNet Krnić, M, Pečarić, JE, Vuković, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008) MATHMathSciNet
23.
go back to reference Rassias, TM, Yang, BC: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263-277 (2013) MathSciNetCrossRef Rassias, TM, Yang, BC: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263-277 (2013) MathSciNetCrossRef
24.
go back to reference Rassias, TM, Yang, BC: On a multidimensional half - discrete Hilbert - type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014) MathSciNetCrossRef Rassias, TM, Yang, BC: On a multidimensional half - discrete Hilbert - type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014) MathSciNetCrossRef
25.
go back to reference Rassias, TM, Yang, BC: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408-418 (2014) MathSciNetCrossRef Rassias, TM, Yang, BC: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408-418 (2014) MathSciNetCrossRef
26.
go back to reference Li, YJ, He, B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1-13 (2007) MATHCrossRef Li, YJ, He, B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1-13 (2007) MATHCrossRef
27.
go back to reference Yang, BC: On a more accurate multidimensional Hilbert-type inequality with parameters. Math. Inequal. Appl. 18(2), 429-441 (2015) MathSciNet Yang, BC: On a more accurate multidimensional Hilbert-type inequality with parameters. Math. Inequal. Appl. 18(2), 429-441 (2015) MathSciNet
28.
go back to reference Yang, BC: An extension of a Hardy-Hilbert-type inequality. J. Guangdong Univ. Educ. 35(3), 1-8 (2015) Yang, BC: An extension of a Hardy-Hilbert-type inequality. J. Guangdong Univ. Educ. 35(3), 1-8 (2015)
29.
go back to reference Kuang, JC: Applied Inequalities. Shangdong Science Technic Press, Jinan (2004) Kuang, JC: Applied Inequalities. Shangdong Science Technic Press, Jinan (2004)
Metadata
Title
On a Hardy-Hilbert-type inequality with parameters
Authors
Bicheng Yang
Qiang Chen
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2015
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0861-7

Other articles of this Issue 1/2015

Journal of Inequalities and Applications 1/2015 Go to the issue

Premium Partner