Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

On a new discrete Mulholland-type inequality in the whole plane

Authors: Bicheng Yang, Qiang Chen

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new discrete Mulholland-type inequality in the whole plane with a best possible constant factor is presented by introducing multi-parameters, applying weight coefficients, and using Hermite–Hadamard’s inequality. Moreover, the equivalent forms, some particular cases, and the operator expressions are considered.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Assume that \(p > 1\), \(\frac{1}{p} + \frac{1}{q} = 1\), \(a_{m},b_{n} \ge0\), \(0 < \sum_{m = 1}^{\infty} a_{m}^{p} < \infty\), and \(0 < \sum_{n = 1}^{\infty} b_{n}^{q} < \infty\), Hardy–Hilbert’s inequality is provided as follows (cf. [1]):
$$ \sum_{n = 1}^{\infty} \sum _{m = 1}^{\infty} \frac{a_{m}b_{n}}{m + n} < \frac{\pi}{\sin(\pi/p)} \Biggl( \sum_{m = 1}^{\infty} a_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 1}^{\infty} b_{n}^{q} \Biggr)^{\frac{1}{q}}, $$
(1)
where \(\frac{\pi}{\sin(\pi/p)}\) is the best possible constant factor. By Theorem 343 in [1] (replacing \(\frac{a_{m}}{m} \) and \(\frac {b_{n}}{n} \) by \(a _{m}\) and \(b _{n}\), respectively), it yields the following Mulholland’s inequality:
$$ \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{a_{m}b_{n}}{\ln mn} < \frac{\pi}{\sin(\pi/p)} \Biggl( \sum_{m = 2}^{\infty} \frac{a_{m}^{p}}{m} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 2}^{\infty} \frac{b_{n}^{q}}{n} \Biggr)^{\frac{1}{q}}. $$
(2)
Equations (1) and (2) are important inequalities in analysis and its applications (cf. [1, 2]).
In 2007, Yang [3] firstly provided the following Hilbert-type integral inequality in the whole plane:
$$ \int_{ - \infty}^{\infty} \int_{ - \infty}^{\infty} \frac{f(x)g(y)}{(1 + e^{x + y})^{\lambda}} \,dx\,dy < B\biggl( \frac{\lambda}{2},\frac{\lambda}{ 2}\biggr) \biggl( \int_{ - \infty}^{\infty} e^{ - \lambda x}f^{2}(x)\,dx \int_{ - \infty}^{\infty} e^{ - \lambda y}g^{2}(y)\,dy \biggr)^{\frac{1}{2}}, $$
(3)
where \(B(\frac{\lambda}{2},\frac{\lambda}{2})\) (\(\lambda> 0\)) is the best possible constant factor. Various extensions of (1)–(3) have been presented since then (cf. [415]).
Recently, Yang and Chen [16] presented an extension of (1) in the whole plane as follows:
$$ \begin{aligned}[b] &\sum_{ \vert n \vert = 1}^{\infty} \sum_{ \vert m \vert = 1}^{\infty} \frac{a_{m}b_{n}}{( \vert m - \xi \vert + \vert n - \eta \vert )^{\lambda}} \\&\quad< 2B(\lambda_{1},\lambda_{2}) \Biggl[ \sum _{ \vert m \vert = 1}^{\infty} \vert m - \xi \vert ^{p(1 - \lambda_{1}) - 1}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{ \vert n \vert = 1}^{\infty} \vert n - \eta \vert ^{q(1 - \lambda_{2}) - 1} b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned} $$
(4)
where \(2B(\lambda_{1},\lambda_{2})\) (\(0 < \lambda_{1},\lambda_{2} \le 1\), \(\lambda_{1} + \lambda_{2} = \lambda\), \(\xi,\eta\in[0,\frac{1}{2}]\)) is the best possible constant factor. In addition, Yang et al. [17, 18] also carried out a few similar works.
In this paper, we present a new discrete Mulholland-type inequality in the whole plane with a best possible constant factor that is similar to that in (4) via introducing multi-parameters, applying weight coefficients, and using Hermite–Hadamard’s inequality. Moreover, the equivalent forms, some particular cases, and the operator expressions are considered.

2 An example and two lemmas

In what follows, we assume that \(0 < \lambda_{1},\lambda_{2} < 1\), \(\lambda_{1} + \lambda_{2} = \lambda\le1\), \(\xi,\eta\in[0,\frac{1}{2}]\), \(\alpha,\beta\in[\arccos\frac{1}{3},\frac{\pi}{2}] \), and
$$ k_{\gamma} (\lambda_{1}): = \frac{2\pi^{2}\csc^{2}\gamma}{ \lambda^{2}\sin^{2}(\frac{\pi\lambda_{1}}{\lambda} )}\quad(\gamma= \alpha,\beta). $$
(5)
Remark 1
In view of the assumptions that \(\xi,\eta\in [0,\frac{1}{2}]\), \(\alpha,\beta\in[\arccos\frac{1}{3},\frac{\pi}{2}] \), it follows that
$$\biggl(\frac{3}{2} \pm\eta\biggr) (1 \mp\cos\beta) \ge1\quad\mbox{and} \quad\biggl( \frac{3}{2} \pm \xi\biggr) (1 \mp\cos\alpha) \ge1. $$
Example 1
For \(u > 0 \), we set \(g(u): = \frac{\ln u}{u - 1}\) (\(u > 0\)), \(g(1): = \lim_{u \to1}g(u) = 1 \). Then we have \(g(u) > 0\), \(g'(u) < 0\), \(g''(u) > 0\) (\(u > 0\)). In fact, we find
$$g(u) = \frac{\ln[1 + (u - 1)]}{u - 1} = \sum_{k = 0}^{\infty} ( - 1)^{k}\frac{(u - 1)^{k}}{k + 1} = \sum_{k = 0}^{\infty} \frac{( - 1)^{k}k!}{k + 1} \frac{(u - 1)^{k}}{k!}\quad( - 1 < u - 1 \le1), $$
and then \(g^{(k)}(1) = \frac{( - 1)^{k}k!}{k + 1}\) (\(k = 0,1,2, \ldots\)). Hence, \(g^{(0)}(1) = g(1)\), \(g'(1) = - \frac{1}{2}\), \(g''(1) = \frac{2}{3} \). It is evident that \(g(u) > 0 \). We obtain \(g'(u) = \frac{h(u)}{u(u - 1)^{2}}\), \(h(u): = u - 1 - u\ln u \). Since
$$h'(u) = - \ln u > 0\quad(0 < u < 1);\qquad h'(u) < 0\quad(u > 1), $$
it follows that \(h_{\max} = h(1) = 0 \) and \(h(u) < 0\) (\(u \ne1\)). Then we have \(g'(u) < 0\) (\(u \ne1\)). In view of \(g'(1) = - \frac{1}{2} < 0 \), it follows that \(g'(u) < 0\) (\(u > 0\)). We find
$$g''(u) = \frac{J(u)}{u^{2}(u - 1)^{3}},\qquad J(u): = - (u - 1)^{2} - 2u(u - 1) + 2u^{2}\ln u, $$
\(J'(u) = - 4(u - 1) + 4u\ln u \), and
$$J''(u) = 4\ln u < 0 \quad(0 < u < 1);\qquad J''(u) > 0\quad(u > 1). $$
It follows that \(J'_{\min} = J'(1) = 0 \), \(J'(u) > 0\) (\(u \ne1\)) and \(J(u)\) is strictly increasing. In view of \(J(1) = 0 \), we have
$$J(u) < 0\quad(0 < u < 1);\qquad J(u) > 0\quad(u > 1), $$
and \(g''(u) > 0\) (\(u \ne1\)). Since \(g''(1) = \frac{2}{3} > 0 \), we find \(g''(u) > 0\) (\(u > 0\)).
For \(0 < \lambda\le1\), \(0 < \lambda_{2} < 1 \), setting \(G(u): = g(u^{\lambda} )u^{\lambda_{2} - 1}\) (\(u > 0\)), we still have \(G(u) > 0 \), \(G'(u) = \lambda g'(u^{\lambda} )u^{\lambda+ \lambda_{2} - 2} + (\lambda_{2} - 1)g(u^{\lambda} )u^{\lambda_{2} - 2} < 0 \), and
$$\begin{aligned} G''(u) = {}& \lambda^{2}g''\bigl(u^{\lambda} \bigr)u^{2\lambda+ \lambda_{2} - 3} + \lambda(\lambda+ \lambda_{2} - 2)g'\bigl(u^{\lambda} \bigr)u^{\lambda+ \lambda_{2} - 3} \\ &+ \lambda(\lambda_{2} - 1)g'\bigl(u^{\lambda} \bigr)u^{\lambda+ \lambda_{2} - 3} + (\lambda_{2} - 1) (\lambda_{2} - 2)g\bigl(u^{\lambda} \bigr)u^{\lambda_{2} - 3} > 0. \end{aligned} $$
We set \(F(x,y): = \frac{\ln(x/y)}{x^{\lambda} - y^{\lambda}} (\frac{y}{x})^{\lambda_{2} - 1}\) (\(x,y > 0\)). Since \(F(x,y) = \frac{1}{x^{\lambda}} G(\frac{y}{x})\), we have
$$F(x,y) > 0,\qquad\frac{\partial}{\partial y}F(x,y) < 0,\qquad\frac{\partial^{2}}{\partial y^{2}}F(x,y) > 0. $$
Hence, for \(x,y > 1 \), we still have
$$\frac{1}{y}F(\ln x,\ln y) > 0,\qquad\frac{\partial}{\partial y}\biggl( \frac {1}{y}F(\ln x,\ln y)\biggr) < 0,\qquad\frac{\partial^{2}}{\partial y^{2}}\biggl( \frac{1}{y}F(\ln x,\ln y)\biggr) > 0. $$
Lemma 1
(cf. [19])
If \(f(u) > 0\), \(f'(u) < 0\), \(f''(u) > 0\) (\(u > \frac{3}{2}\)) and \(\int_{\frac{3}{2}}^{\infty} f(u)\,du < \infty \), then we have the following Hermite–Hadamard’s inequality:
$$\int_{k}^{k + 1} f(u)\,du < f(k) < \int_{k - \frac{1}{2}}^{k + \frac{1}{2}} f(u)\,du \quad\bigl(k \in\mathbf{N} \setminus\{ 1\} \bigr), $$
and then
$$ \int_{2}^{\infty} f(u)\,du < \sum _{k = 2}^{\infty} f(k) < \int_{\frac{3}{2}}^{\infty} f(u)\,du. $$
(6)
For \(|x|,|y| \ge\frac{3}{2} \), let the functions
$$A_{\xi,\alpha} (x): = \vert x - \xi \vert + (x - \xi)\cos\alpha, $$
\(A_{\eta,\beta} (y) = |y - \eta| + (y - \eta)\cos\beta \), and
$$ k(x,y): = \frac{\ln(\ln A_{\xi,\alpha} (x)/\ln A_{\eta,\beta} (y))}{\ln^{\lambda} A_{\xi,\alpha} (x) - \ln^{\lambda} A_{\eta,\beta} (y)}. $$
(7)
We define two weight coefficients as follows:
$$\begin{aligned}& \omega(\lambda_{2},m): = \sum_{ \vert n \vert = 2}^{\infty} \frac{k(m,n)}{A_{\eta,\beta} (n)} \cdot \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}, \quad \vert m \vert \in\mathbf{N} \setminus\{ 1\}, \end{aligned}$$
(8)
$$\begin{aligned}& \varpi(\lambda_{1},n): = \sum_{ \vert m \vert = 2}^{\infty} \frac{k(m,n)}{A_{\xi,\alpha} (m)} \cdot \frac{\ln^{\lambda_{2}}A_{\eta,\beta} (n)}{\ln^{1 - \lambda_{1}}A_{\xi,\alpha} (m)}, \quad \vert n \vert \in\mathbf{N} \setminus\{ 1\}, \end{aligned}$$
(9)
where \(\sum_{|j| = 2}^{\infty} \cdots= \sum_{j = - 2}^{ - \infty} \cdots+ \sum_{j = 2}^{\infty} \cdots\) (\(j = m,n\)).
Lemma 2
The inequalities
$$ k_{\beta} (\lambda_{1}) \bigl(1 - \theta( \lambda_{2},m)\bigr) < \omega (\lambda_{2},m) < k_{\beta} (\lambda_{1}), \quad \vert m \vert \in\mathbf{N} \setminus \{ 1\} $$
(10)
are valid, where
$$\begin{aligned}[b] \theta(\lambda_{2},m)&: = \biggl[\frac{\lambda}{\pi} \sin\biggl( \frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln[(2 + \eta)(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda _{2} - 1} \,du \\&= O\biggl(\frac{1}{\ln^{\lambda_{2}/2}A_{\xi,\alpha} (m)}\biggr) \in (0,1).\end{aligned} $$
(11)
Proof
For \(|m| \in\mathbf{N}\setminus\{ 1\} \), let
$$\begin{gathered} k^{(1)}(m,y): = \frac{\ln\ln A_{\xi,\alpha} (m) - \ln \ln [(y - \eta)(\cos\beta- 1)]}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} [(y - \eta)(\cos\beta- 1)]},\quad y < - \frac{3}{2}, \\ k^{(2)}(m,y): = \frac{\ln\ln A_{\xi,\alpha} (m) - \ln\ln[(y - \eta )(\cos\beta+ 1)]}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} [(y - \eta)(\cos\beta+ 1)]},\quad y > \frac{3}{2}. \end{gathered} $$
Then we have
$$k^{(1)}(m, - y) = \frac{\ln\ln A_{\xi,\alpha} (m) - \ln\ln[(y + \eta)(1 - \cos\beta)]}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} [(y + \eta)(1 - \cos\beta)]},\quad y > \frac{3}{2}, $$
yields
$$ \begin{aligned}[b] \omega(\lambda_{2},m) = {}&\sum _{n = - 2}^{ - \infty} \frac{k^{(1)}(m,n)\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{(n - \eta)(\cos \beta- 1)\ln^{1 - \lambda_{2}}[(n - \eta)(\cos\beta- 1)]} \\ &+ \sum_{n = 2}^{\infty} \frac{k^{(2)}(m,n)\ln^{\lambda_{1}}A_{\xi ,\alpha} (m)}{(n - \eta)(1 + \cos\beta)\ln^{1 - \lambda_{2}}[(n - \eta)(1 + \cos \beta)]} \\ ={}& \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 - \cos\beta} \sum_{n = 2}^{\infty} \frac{k^{(1)}(m, - n)}{(n + \eta)\ln^{1 - \lambda_{2}}[(n + \eta)(1 - \cos\beta)]} \\ &+ \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 + \cos\beta} \sum_{n = 2}^{\infty} \frac{k^{(2)}(m,n)}{(n - \eta)\ln^{1 - \lambda_{2}}[(n - \eta)(1 + \cos\beta)]}. \end{aligned} $$
(12)
In virtue of \(0 < \lambda\le1\), \(0 < \lambda_{2} < 1 \), and Example 1, we find that for \(y > \frac{3}{2} \),
$$\begin{gathered} \frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta)\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta)(1 + ( - 1)^{i}\cos\beta)]} > 0, \\ \frac{d}{dy}\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta)\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta)(1 + ( - 1)^{i}\cos\beta)]} < 0, \\ \frac{d^{2}}{dy^{2}}\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta )\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta)(1 + ( - 1)^{i}\cos\beta )]} > 0\quad(i = 1,2), \end{gathered} $$
it follows that
$$\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta)\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta)(1 + ( - 1)^{i}\cos\beta)]}\quad(i = 1,2) $$
are strictly decreasing and convex in \(( \frac{3}{2},\infty )\). Then, by (5), (12) yields
$$\begin{aligned} \omega(\lambda_{2},m) < {}& \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 - \cos\beta} \int_{\frac{3}{2}}^{\infty} \frac{k^{(1)}(m, - y)}{(y + \eta)\ln^{1 - \lambda_{2}}[(y + \eta)(1 - \cos\beta)]} \,dy \\ &+ \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 + \cos\beta} \int_{\frac{3}{2}}^{\infty} \frac{k^{(2)}(m,y)}{(y - \eta)\ln^{1 - \lambda_{2}}[(y - \eta)(1 + \cos\beta)]} \,dy. \end{aligned} $$
Setting \(u = \frac{\ln[(y + \eta)(1 - \cos\beta)]}{\ln A_{\xi,\alpha} (m)}\) (\(u = \frac{\ln[(y - \eta)(1 + \cos\beta)]}{\ln A_{\xi,\alpha} (m)}\)) in the above first (second) integral, in view of Remark 1, we obtain
$$\begin{aligned} \omega(\lambda_{2},m) &< \biggl( \frac{1}{1 - \cos\beta} + \frac{1}{1 + \cos\beta} \biggr) \int_{0}^{\infty} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ &= \frac{2\csc^{2}\beta}{\lambda^{2}} \int_{0}^{\infty} \frac{\ln v}{v - 1} v^{(\lambda_{2}/\lambda) - 1}\,dv = \frac{2\pi^{2}\csc^{2}\beta}{ \lambda^{2}\sin^{2}(\frac{\pi\lambda_{1}}{\lambda} )} = k_{\beta} (\lambda_{1}) \end{aligned} $$
by simplifications. Similarly, by (5), (12) also yields
$$\begin{aligned} \omega(\lambda_{2},m) >{}& \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 - \cos\beta} \int_{2}^{\infty} \frac{k^{(1)}(m, - y)}{(y + \eta)\ln^{1 - \lambda_{2}}[(y + \eta)(1 - \cos\beta)]} \,dy \\ &+ \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 + \cos\beta} \int_{2}^{\infty} \frac{k^{(2)}(m,y)}{(y - \eta)\ln^{1 - \lambda _{2}}[(y - \eta)(1 + \cos\beta)]} \,dy \\ \ge{}& \biggl(\frac{1}{1 - \cos\beta} + \frac{1}{1 + \cos\beta} \biggr) \int_{\frac{\ln[(2 + \eta)(1 + \cos\beta)]}{\ln A_{\xi,\alpha} (m)}}^{\infty} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ ={}& k_{\beta} (\lambda_{1}) - 2\csc^{2}\beta \int_{0}^{\frac{\ln[(2 + \eta )(1 + \cos\beta)]}{\ln A_{\xi,\alpha} (m)}} \frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2} - 1} \,du \\ ={}& k_{\beta} (\lambda_{1}) \bigl(1 - \theta( \lambda_{2},m)\bigr) > 0, \end{aligned} $$
where \(\theta(\lambda_{2},m)\) (<1) is indicated by (11). Since
$$\frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2}/2} \to0\quad\bigl(u \to0^{ +} \bigr);\qquad \frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2}/2} \to\frac{1}{\lambda} \quad(u \to1), $$
there exists a positive constant C such that \(\frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2}/2} \le C\) (\(0 < u \le1\)), and then for \(A_{\xi,\alpha} (m) \ge(2 + \eta)(1 + \cos\beta)\), we have
$$ \begin{aligned}[b] 0 &< \theta(\lambda_{2},m) \le C\biggl[ \frac{\lambda}{\pi} \sin\biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln[(2 + \eta)(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} u^{\frac{\lambda_{2}}{2} - 1} \,du \\ &= \frac{2C}{\lambda_{2}}\biggl[\frac{\lambda}{\pi} \sin\biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2}\biggl\{ \frac{\ln[(2 + \eta)(1 + \cos\beta )]}{\ln A_{\xi,\alpha} (m)}\biggr\} ^{\frac{\lambda_{2}}{2}}. \end{aligned} $$
(13)
Hence, (10) and (11) are valid. □
Similarly, we have the following.
Lemma 3
For \(0 < \lambda\le1\), \(0 < \lambda_{1} < 1 \), the inequalities
$$ k_{\alpha} (\lambda_{1}) \bigl(1 - \tilde{\theta} ( \lambda_{1},n)\bigr) < \varpi (\lambda_{1},n) < k_{\alpha} (\lambda_{1}), \quad \vert n \vert \in\mathbf{N} \setminus \{ 1\} $$
(14)
are valid, where
$$\begin{aligned}[b] \tilde{\theta} (\lambda_{1},n)&: = \biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln[(2 + \xi)(1 + \cos \alpha )]}{\ln A_{\eta,\beta} (n)}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda _{1} - 1} \,du\\& = O\biggl(\frac{1}{\ln^{\lambda_{1}/2}A_{\eta,\beta} (n)}\biggr) \in (0,1).\end{aligned} $$
(15)
Lemma 4
If \((\varsigma,\gamma) = (\xi,\alpha )\) (or \((\eta,\beta )\)), \(\rho> 0 \), then we have
$$ H_{\rho} (\varsigma,\gamma): = \sum_{|k| = 2}^{\infty} \frac{\ln^{ - 1 - \rho} A_{\varsigma,\gamma} (k)}{A_{\varsigma,\gamma} (k)} = \frac {1}{\rho} \bigl(2\csc^{2}\gamma+ o(1) \bigr) \quad\bigl(\rho\to0^{ +} \bigr). $$
(16)
Proof
According to (5), we obtain
$$\begin{aligned} H_{\rho} (\varsigma,\gamma) &= \sum _{k = - 2}^{ - \infty} \frac{\ln^{ - 1 - \rho} [(k - \varsigma)(\cos\gamma- 1)]}{(k - \varsigma )(\cos\gamma- 1)} + \sum _{k = 2}^{\infty} \frac{\ln^{ - 1 - \rho} [(k - \varsigma)(\cos\gamma+ 1)]}{(k - \varsigma)(\cos\gamma+ 1)} \\ &= \sum_{k = 2}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(k + \varsigma)(1 - \cos\gamma)]}{(k - \varsigma)(1 - \cos\gamma)} + \frac{\ln^{ - 1 - \rho} [(k - \varsigma)(\cos\gamma+ 1)]}{(k - \varsigma)(\cos\gamma+ 1)}\biggr\} \\ &< \int_{\frac{3}{2}}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(y + \varsigma )(1 - \cos\gamma)]}{(y - \varsigma)(1 - \cos\gamma)} + \frac{\ln^{ - 1 - \rho} [(y - \varsigma)(\cos\gamma+ 1)]}{(y - \varsigma)(\cos \gamma+ 1)}\biggr\} \,dy \\ & = \frac{1}{\rho} \biggl\{ \frac{\ln^{ - \rho} [(\frac{3}{2} + \varsigma)(1 - \cos\gamma)]}{1 - \cos\gamma} + \frac{\ln^{ - \rho} [(\frac{3}{2} - \varsigma)(1 + \cos\gamma)]}{1 + \cos\gamma} \biggr\} \\ &= \frac{1}{\rho} \biggl(\frac{1}{1 - \cos\gamma} + \frac{1}{1 + \cos\gamma } + o_{1}(1)\biggr) = \frac{1}{\rho} \bigl(2\csc^{2} \gamma+ o_{1}(1)\bigr)\quad \bigl(\rho\to0^{ +} \bigr), \end{aligned} $$
and
$$\begin{aligned} H_{\rho} (\varsigma,\gamma) &= \sum _{k = 2}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(k + \varsigma)(1 - \cos\gamma)]}{(k - \varsigma)(1 - \cos\gamma)} + \frac{\ln^{ - 1 - \rho} [(k - \varsigma )(\cos\gamma+ 1)]}{(k - \varsigma)(\cos\gamma+ 1)}\biggr\} \\ &> \int_{2}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(y + \varsigma)(1 - \cos \gamma)]}{(y - \varsigma)(1 - \cos\gamma)} + \frac{\ln^{ - 1 - \rho} [(y - \varsigma)(\cos\gamma+ 1)]}{(y - \varsigma)(\cos\gamma+ 1)}\biggr\} \,dy \\ &= \frac{1}{\rho} \biggl\{ \frac{\ln^{ - \rho} [(2 + \varsigma )(1 - \cos\gamma)]}{1 - \cos\gamma} + \frac{\ln^{ - \rho} [(2 - \varsigma)(1 + \cos\gamma)]}{1 + \cos\gamma} \biggr\} \\ &= \frac{1}{\rho} \biggl(\frac{1}{1 - \cos\gamma} + \frac{1}{1 + \cos\gamma } + o_{2}(1)\biggr) = \frac{1}{\rho} \bigl(2\csc^{2}\gamma+ o_{2}(1)\bigr) \quad\bigl(\rho\to0^{ +} \bigr). \end{aligned} $$
Therefore, (16) is valid. □

3 Main results

Theorem 1
Suppose that \(p > 1\), \(\frac{1}{p} + \frac{1}{q} = 1 \), we set
$$ k(\lambda_{1}): = k_{\beta}^{1/p}( \lambda_{1})k_{\alpha}^{1/q}(\lambda_{1}) = \frac{2\pi^{2}\csc^{2/p}\beta\csc^{2/q}\alpha}{[\lambda\sin(\frac {\pi \lambda_{1}}{\lambda} )]^{2}}. $$
(17)
If \(a_{m},b_{n} \ge0\) (\(|m|,|n| \in\mathbf{N}\setminus\{ 1\} \)) satisfy
$$0 < \sum_{|m| = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}} a_{m}^{p} < \infty ,\qquad0 < \sum_{|n| = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} < \infty, $$
then we obtain the following equivalent inequalities:
$$\begin{aligned}& \begin{aligned}[b] I&: = \sum_{|n| = 2}^{\infty} \sum_{|m| = 2}^{\infty} \frac{\ln(\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)} a_{m}b_{n} \\ &< \frac{2\pi^{2}\csc^{2/p}\beta\csc^{2/q}\alpha}{[\lambda\sin(\frac {\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{|m| = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}\\ &\quad{}\times \Biggl[ \sum_{|n| = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(18)
$$\begin{aligned}& \begin{aligned}[b] J&: = \Biggl\{ \sum_{|n| = 2}^{\infty} \frac{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \Biggl[ \sum_{|m| = 2}^{\infty} \frac{\ln(\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)}a_{m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &< \frac{2\pi^{2}\csc^{2/p}\beta\csc^{2/q}\alpha}{[\lambda\sin(\frac {\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{|m| = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned} \end{aligned}$$
(19)
Particularly, (i) for \(\alpha= \beta= \frac{\pi}{2}\), \(\xi,\eta\in [0,\frac{1}{2}] \), we have the following equivalent inequalities:
$$\begin{aligned}& \sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln( \vert m - \xi \vert / \vert n - \eta \vert )a_{m}b_{n}}{\ln^{\lambda} \vert m - \xi \vert - \ln^{\lambda} \vert n - \eta \vert } \\& \quad< \frac{2\pi^{2}}{[\lambda\sin(\frac{\pi\lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1} \vert m - \xi \vert }{ \vert m - \xi \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1} \vert n - \eta \vert }{ \vert n - \eta \vert ^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(20)
$$\begin{aligned}& \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{p\lambda_{2} - 1} \vert n - \eta \vert }{ \vert n - \eta \vert } \Biggl( \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln( \vert m - \xi \vert / \vert n - \eta \vert )a_{m}}{\ln^{\lambda} \vert m - \xi \vert - \ln^{\lambda} \vert n - \eta \vert } \Biggr)^{p} \Biggr]^{\frac{1}{p}} \\& \quad< \frac{2\pi^{2}}{[\lambda\sin(\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1} \vert m - \xi \vert }{ \vert m - \xi \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
(21)
(ii) For \(\xi= \eta= 0\), \(\alpha,\beta\in[\arccos\frac{1}{3},\frac{\pi}{ 2}] \), we have the following equivalent inequalities:
$$\begin{aligned}& \begin{aligned}[b] &\sum_{ \vert n \vert = 2}^{\infty} \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln[\ln( \vert m \vert + m\cos \alpha)/\ln( \vert n \vert + n\cos\beta)]}{\ln^{\lambda} ( \vert m \vert + m\cos\alpha) - \ln^{\lambda} ( \vert n \vert + n\cos\beta)} a_{m}b_{n} \\ &\quad< \frac{2\pi^{2}\csc^{2/p}\beta\csc^{2/q}\alpha}{[\lambda\sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}}\\&\qquad{}\times \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}( \vert m \vert + m\cos\alpha)}{( \vert m \vert + m\cos\alpha)^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}( \vert n \vert + n\cos\beta)}{( \vert n \vert + n\cos \beta )^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(22)
$$\begin{aligned}& \begin{aligned}[b]& \Biggl\{ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{p\lambda _{2} - 1}( \vert n \vert + n\cos \beta)}{ \vert n \vert + n\cos\beta} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln [\ln ( \vert m \vert + m\cos\alpha)/\ln( \vert n \vert + n\cos\beta)]}{\ln^{\lambda} ( \vert m \vert + m\cos \alpha) - \ln^{\lambda} ( \vert n \vert + n\cos\beta)}a_{m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &\quad< \frac{2\pi^{2}\csc^{2/p}\beta\csc^{2/q}\alpha}{[\lambda\sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}( \vert m \vert + m\cos\alpha)}{( \vert m \vert + m\cos\alpha)^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned} \end{aligned}$$
(23)
Proof
According to Hölder’s inequality with weight (cf. [20]) and (9), we find
$$\begin{gathered} \Biggl( \sum_{|m| = 2}^{\infty} k(m,n)a_{m} \Biggr)^{p} \\ \quad= \Biggl\{ \sum_{|m| = 2}^{\infty} k(m,n) \biggl[ \frac{(A_{\xi,\alpha} (m))^{\frac{1}{q}}\ln^{\frac{1 - \lambda_{1}}{q}}A_{\xi,\alpha} (m)}{\ln^{\frac{1 - \lambda_{2}}{p}}A_{\eta,\beta} (n)}a_{m} \biggr] \biggl[ \frac{\ln^{\frac{1 - \lambda_{2}}{p}}A_{\eta,\beta} (n)}{(A_{\xi,\alpha} (m))^{\frac{1}{q}}\ln^{\frac{1 - \lambda_{1}}{q}}A_{\xi,\alpha} (m)} \biggr] \Biggr\} ^{p} \\ \quad\le\sum_{|m| = 2}^{\infty} k(m,n) \frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}\\ \quad\quad{}\times a_{m}^{p} \Biggl[ \sum _{|m| = 2}^{\infty} k(m,n)\frac{\ln^{\frac{(1 - \lambda_{2})q}{p}}A_{\eta,\beta} (n)}{A_{\xi,\alpha} (m)\ln^{1 - \lambda_{1}}A_{\xi,\alpha} (m)} \Biggr]^{p - 1} \\ \quad= \frac{(\varpi(\lambda_{1},n))^{p - 1}A_{\eta,\beta} (n)}{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}\sum_{|m| = 2}^{\infty} k(m,n)\frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{A_{\eta,\beta} (n)\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p}. \end{gathered} $$
Then, by (14), it yields
$$ \begin{aligned}[b] J &< k_{\alpha}^{1/q}( \lambda_{1}) \Biggl[ \sum_{|n| = 2}^{\infty} \sum_{|m| = 2}^{\infty} k(m,n)\frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{A_{\eta,\beta} (n)\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &= k_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{|m| = 2}^{\infty} \sum _{|n| = 2}^{\infty} k(m,n)\frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{A_{\eta,\beta} (n)\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &= k_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{|m| = 2}^{\infty} \omega (\lambda_{2},m) \frac{n^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned} $$
(24)
Combining (10) and (17), we obtain (19).
Using Hölder’s inequality again, we obtain
$$ \begin{aligned}[b] I &= \sum_{|n| = 2}^{\infty} \Biggl[ \frac{(A_{\eta,\beta} (n))^{\frac{ - 1}{p}}}{\ln^{\frac{1}{p} - \lambda_{2}}A_{\eta,\beta} (n)}\sum_{|m| = 2}^{\infty} k(m,n)a_{m} \Biggr] \biggl[ \frac{\ln^{\frac{1}{p} - \lambda_{2}}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{\frac{ - 1}{p}}}b_{n} \biggr] \\ &\le J \Biggl[ \sum_{|n| = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned} $$
(25)
Then, according to (19), we obtain (18).
On the other hand, assuming that (18) is valid, we let
$$b_{n}: = \frac{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \Biggl( \sum _{ \vert m \vert = 2}^{\infty} k(m,n)a_{m} \Biggr)^{p - 1},\quad \vert n \vert \in \mathbf{N}\setminus\{ 1\}. $$
According to (24), it follows that \(J < \infty \). If \(J = 0 \), then (20) is trivially valid; if \(J > 0 \), then we have
$$\begin{gathered} \begin{aligned} 0 &< \sum _{|n| = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} \\&= J^{p} = I \\ &< k(\lambda_{1}) \Biggl[ \sum_{|m| = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{|n| = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned} \\ \begin{aligned}J &= \Biggl[ \sum_{|n| = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{p}} \\&< k( \lambda_{1}) \Biggl[ \sum_{|m| = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}.\end{aligned} \end{gathered} $$
Thus (19) is valid, which is equivalent to (18). □
Theorem 2
With regards to the assumptions in Theorem 1, \(k(\lambda _{1})\) is the best possible constant factor in (18) and (19).
Proof
For \(0 < \varepsilon< \min\{ q(1 - \lambda_{1}),q\lambda_{2}\} \), we let \(\tilde{\lambda}_{1} = \lambda_{1} + \frac{\varepsilon}{q}\) (\(\in(0,1)\)), \(\tilde{\lambda}_{2} = \lambda_{2} - \frac{\varepsilon}{q}\) (\(\in(0,1)\)), and
$$\begin{gathered}\tilde{a}_{m}: = \frac{\ln^{\lambda_{1} - \frac{\varepsilon}{p} - 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} = \frac{\ln^{\tilde{\lambda}_{1} - \varepsilon- 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)}\quad\bigl( \vert m \vert \in\mathbf{N}\setminus\{ 1\} \bigr), \\ \tilde{b}_{n}: = \frac{\ln^{\lambda_{2} - \frac{\varepsilon}{q} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} = \frac{\ln^{\tilde{\lambda}_{2} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)}\quad\bigl( \vert n \vert \in \mathbf{N}\setminus\{ 1\} \bigr). \end{gathered} $$
Then (16) and (14) yield
$$\begin{gathered} \begin{aligned} \tilde{I}_{1}&: = \Biggl[ \sum_{|m| = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}\tilde{a}_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{|n| = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} \tilde{b}_{n}^{q} \Biggr]^{\frac{1}{q}} \\ &= \Biggl[ \sum_{|m| = 2}^{\infty} \frac{\ln^{ - 1 - \varepsilon} A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{|n| = 2}^{\infty} \frac{\ln^{ - 1 - \varepsilon} A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \Biggr]^{\frac{1}{q}} \\ &= \frac{1}{\varepsilon} \bigl(2\csc^{2}\alpha+ o(1) \bigr)^{\frac{1}{p}}\bigl(2\csc^{2}\beta+ \tilde{o}(1) \bigr)^{\frac{1}{q}}\quad\bigl(\varepsilon\to0^{ +} \bigr), \end{aligned} \\ \begin{aligned} \tilde{I}&: = \sum_{|n| = 2}^{\infty} \sum_{|m| = 2}^{\infty} k(m,n) \tilde{a}_{m} \tilde{b}_{n} = \sum_{|m| = 2}^{\infty} \sum_{|n| = 2}^{\infty} k(m,n) \frac{\ln^{\tilde{\lambda}_{1} - \varepsilon - 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} \frac{\ln^{\tilde{\lambda}_{2} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \\ &= \sum_{|m| = 2}^{\infty} \omega(\tilde{ \lambda}_{2},m)\frac{\ln^{ - \varepsilon- 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} > k_{\beta} (\tilde{ \lambda}_{1})\sum_{|m| = 2}^{\infty} \bigl(1 - \theta (\tilde{\lambda}_{2},m)\bigr)\frac{\ln^{ - \varepsilon- 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} \\ &= k_{\beta} (\tilde{\lambda}_{1}) \Biggl[ \sum _{|m| = 2}^{\infty} \frac {\ln^{ - \varepsilon- 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} - \sum _{|m| = 2}^{\infty} \frac{O(\ln^{ - (\frac{\varepsilon}{p} + \frac{\lambda_{2}}{2}) - 1}A_{\xi,\alpha} (m))}{A_{\xi,\alpha} (m)} \Biggr] \\ &= \frac{1}{\varepsilon} k_{\beta} (\tilde{\lambda}_{1}) \quad\bigl(2\csc ^{2}\alpha+ o(1) - \varepsilon O(1)\bigr). \end{aligned} \end{gathered} $$
If there exists a positive number \(K \le k(\lambda_{1})\) such that (18) is still valid when replacing \(k(\lambda_{1})\) by K, then we obtain
$$\varepsilon\tilde{I} = \varepsilon\sum_{|n| = 2}^{\infty} \sum_{|m| = 2}^{\infty} k(m,n) \tilde{a}_{m} \tilde{b}_{n} < \varepsilon K\tilde{I}_{1}. $$
Hence, in view of the above results, it follows that
$$k_{\beta} \biggl(\lambda_{1} + \frac{\varepsilon}{q}\biggr) \bigl(2\csc^{2}\alpha+ o(1) - \varepsilon O(1)\bigr) < K\bigl(2 \csc^{2}\alpha+ o(1)\bigr)^{\frac{1}{p}}\bigl(2\csc ^{2} \beta + \tilde{o}(1)\bigr)^{\frac{1}{q}}, $$
and then
$$\frac{4\pi^{2}}{[\lambda\sin(\frac{\pi\lambda_{1}}{\lambda} )]^{2}}\csc^{2}\beta\csc^{2}\alpha\le2K \csc^{\frac{2}{p}}\alpha \csc^{\frac{2}{q}}\beta\quad\bigl(\varepsilon \to0^{ +} \bigr), $$
namely
$$k(\lambda_{1}) = \frac{2\pi^{2}}{[\lambda\sin(\frac{\pi \lambda_{1}}{\lambda} )]^{2}}\csc^{\frac{2}{p}}\beta \csc^{\frac{2}{q}}\alpha\le K. $$
Hence, \(K = k(\lambda_{1})\) is the best possible constant factor in (18).
\(k(\lambda_{1})\) in (19) is still the best possible constant factor. Otherwise we would reach a contradiction by (25) that \(k(\lambda_{1})\) in (18) is not the best possible constant factor. □

4 Operator expressions and a remark

Let \(\varphi(m): = \frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}\) (\(|m| \in\mathbf{N}\setminus\{ 1\} \)), and \(\psi(n): = \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} \), wherefrom
$$\psi^{1 - p}(n): = \frac{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)}\quad\bigl( \vert n \vert \in \mathbf{N}\setminus\{ 1\} \bigr). $$
We define the real weighted normed function spaces as follows:
$$\begin{gathered} l_{p,\varphi}: = \Biggl\{ a = \{ a_{m}\}_{ \vert m \vert = 2}^{\infty}; \Vert a \Vert _{p,\varphi} = \Biggl( \sum_{ \vert m \vert = 2}^{\infty} \varphi (m) \vert a_{m} \vert ^{p} \Biggr)^{\frac{1}{p}} < \infty \Biggr\} , \\ l_{q,\psi}: = \Biggl\{ b = \{ b_{n}\}_{ \vert n \vert = 2}^{\infty}; \Vert b \Vert _{q,\psi} = \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \psi(n) \vert b_{n} \vert ^{q} \Biggr)^{\frac {1}{q}} < \infty \Biggr\} , \\ l_{p,\psi^{1 - p}}: = \Biggl\{ c = \{ c_{n}\}_{ \vert n \vert = 2}^{\infty}; \Vert c \Vert _{p,\psi^{1 - p}} = \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \psi^{1 - p}(n) \vert c_{n} \vert ^{p} \Biggr)^{\frac{1}{p}} < \infty \Biggr\} . \end{gathered} $$
For \(a = \{ a_{m}\}_{|m| = 2}^{\infty} \in l_{p,\varphi} \), we let \(c_{n} = \sum_{|m| = 2}^{\infty} k(m,n)a_{m} \) and \(c = \{ c_{n}\}_{|n| = 2}^{\infty} \), it follows by (19) that \(\|c\|_{p,\psi^{1 - p}} < k(\lambda_{1})\|a\|_{p,\varphi} \), namely \(c \in l_{p,\psi^{1 - p}} \).
Further, we define a Mulholland-type operator \(T:l_{p,\varphi} \to l_{p,\psi^{1 - p}} \) as follows: For \(a_{m} \ge0\), \(a = \{ a_{m}\}_{|m| = 2}^{\infty} \in l_{p,\varphi} \), there exists a unique representation \(Ta = c \in l_{p,\psi^{1 - p}} \). We also define the following formal inner product of Ta and \(b = \{ b_{n}\}_{|n| = 2}^{\infty} \in l_{q,\psi}\) (\(b_{n} \ge 0\)):
$$ (Ta,b): = \sum_{|n| = 2}^{\infty} \sum _{|m| = 2}^{\infty} k(m,n) a_{m}b_{n}. $$
(26)
Hence, we can respectively rewrite (18) and (19) as the following operator expressions:
$$\begin{aligned}& (Ta,b) < k(\lambda_{1}) \Vert a \Vert _{p,\varphi} \Vert b \Vert _{q,\psi}, \end{aligned}$$
(27)
$$\begin{aligned}& \Vert Ta \Vert _{p,\psi^{1 - p}} < k(\lambda_{1}) \Vert a \Vert _{p,\varphi}. \end{aligned}$$
(28)
It follows that the operator T is bounded with
$$ \Vert T \Vert : = \sup_{a( \ne\theta) \in l_{p,\varphi}} \frac{ \Vert Ta \Vert _{p,\psi ^{1 - p}}}{ \Vert a \Vert _{p,\varphi}} \le k( \lambda_{1}). $$
(29)
Since \(k(\lambda_{1})\) in (19) is the best possible constant factor, we obtain
$$ \Vert T \Vert = k(\lambda_{1}) = \frac{2\pi^{2}\csc^{2/p}\beta\csc^{2/q}\alpha}{ [\lambda\sin(\frac{\pi\lambda_{1}}{\lambda} )]^{2}}. $$
(30)
Remark 2
(i) For \(\xi= \eta= 0 \) in (20), we have the following new inequality:
$$\begin{aligned}[b] &\sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln(\ln \vert m \vert /\ln \vert n \vert )a_{m}b_{n}}{\ln^{\lambda} \vert m \vert - \ln^{\lambda} \vert n \vert } \\&\quad< \frac{2\pi^{2}}{[\lambda\sin(\frac{\pi\lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1} \vert m \vert }{ \vert m \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1} \vert n \vert }{ \vert n \vert ^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}.\end{aligned} $$
(31)
It follows that (20) is an extension of (31). In particular, for \(\lambda= 1\), \(\lambda_{1} = \frac{1}{q}\), \(\lambda_{2} = \frac{1}{p} \), we have the following simple Mulholland-type inequality in the whole plane with the best possible constant factor \(\frac{2\pi^{2}}{\sin^{2}(\frac{\pi}{p})} \):
$$ \sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln(\ln \vert m \vert /\ln \vert n \vert )}{\ln( \vert m \vert / \vert n \vert )} a_{m}b_{n} < \frac{2\pi^{2}}{\sin^{2}(\frac{\pi}{p})} \Biggl( \sum_{ \vert m \vert = 2}^{\infty} \frac{a_{m}^{p}}{ \vert m \vert ^{1 - p}} \Biggr)^{\frac{1}{p}} \Biggl( \sum _{ \vert n \vert = 2}^{\infty} \frac{b_{n}^{q}}{ \vert n \vert ^{1 - q}} \Biggr)^{\frac{1}{q}}. $$
(32)
(ii) If \(a_{ - m} = a_{m}\), \(b_{ - n} = b_{n}\) (\(m,n \in\mathbf{N}\setminus \{ 1\} \)), then (20) reduces to
$$ \begin{aligned}[b] &\sum_{n = 2}^{\infty} \sum_{m = 2}^{\infty} \biggl\{ \frac{\ln[\ln(m - \xi)/\ln(n - \eta)]}{\ln^{\lambda} (m - \xi) - \ln^{\lambda} (n - \eta)} + \frac{\ln[\ln(m - \xi)/\ln(n + \eta )]}{\ln^{\lambda} (m - \xi) - \ln^{\lambda} (n + \eta)} \\ &\qquad{} + \frac{\ln[\ln(m + \xi)/\ln(n - \eta)]}{\ln ^{\lambda} (m + \xi ) - \ln^{\lambda} (n - \eta)} + \frac{\ln[\ln(m + \xi)/\ln(n + \eta )]}{\ln^{\lambda} (m + \xi) - \ln^{\lambda} (n + \eta)} \biggr\} a_{m}b_{n} \\ &\quad< \frac{2\pi^{2}}{[\lambda\sin(\frac{\pi\lambda_{1}}{\lambda} )]^{2}} \Biggl\{ \sum_{m = 2}^{\infty} \biggl[ \frac{\ln^{p(1 - \lambda _{1}) - 1}(m - \xi)}{(m - \xi)^{1 - p}} + \frac{\ln^{p(1 - \lambda_{1}) - 1}(m + \xi)}{(m + \xi)^{1 - p}} \biggr]a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\qquad{}\times \Biggl\{ \sum_{n = 2}^{\infty} \biggl[ \frac{\ln^{q(1 - \lambda_{2}) - 1}(n - \eta)}{(n - \eta)^{1 - q}} + \frac{\ln^{q(1 - \lambda_{2}) - 1}(n + \eta)}{(n + \eta)^{1 - q}} \biggr]b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned} $$
(33)
In particular, for \(\lambda= 1\), \(\lambda_{1} = \frac{1}{q}\), \(\lambda_{2} = \frac{1}{p}\), \(\xi= \eta\in[0,\frac{1}{2}] \), we obtain
$$ \begin{aligned}[b]& \sum_{n = 2}^{\infty} \sum_{m = 2}^{\infty} \biggl\{ \frac{\ln[\ln(m - \xi)/\ln(n - \xi)]}{\ln[(m - \xi)/(n - \xi)]} + \frac{\ln[\ln(m - \xi)/\ln(n + \xi)]}{\ln[(m - \xi)/(n + \xi)]} \\ &\qquad{} + \frac{\ln[\ln(m + \xi)/\ln(n - \xi)]}{\ln[(m + \xi)/(n - \xi)]} + \frac{\ln[\ln(m + \xi)/\ln(n + \xi)]}{\ln[(m + \xi)/(n + \xi)]} \biggr\} a_{m}b_{n} \\ &\quad< \frac{2\pi^{2}}{\sin^{2}(\frac{\pi}{p})} \Biggl\{ \sum_{m = 2}^{\infty} \biggl[ \frac{1}{(m - \xi)^{1 - p}} + \frac{1}{(m + \xi)^{1 - p}} \biggr]a_{m}^{p} \Biggr\} ^{\frac{1}{p}}\\&\quad{}\times \Biggl\{ \sum_{n = 2}^{\infty} \biggl[ \frac{1}{(n - \xi)^{1 - q}} + \frac{1}{(n + \xi)^{1 - q}} \biggr]b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned} $$
(34)
For \(\xi= 0 \), (34) reduces to the following simple Mulholland-type inequality with the best possible constant factor \(\frac{\pi^{2}}{\sin^{2}(\frac{\pi}{p})} \):
$$ \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{\ln(\ln m/\ln n)}{\ln (m/n)} a_{m}b_{n} < \frac{\pi^{2}}{\sin^{2}(\frac{\pi}{p})} \Biggl( \sum_{m = 2}^{\infty} \frac{a_{m}^{p}}{m^{1 - p}} \Biggr)^{\frac{1}{p}} \Biggl( \sum _{n = 2}^{\infty} \frac{b_{n}^{q}}{n^{1 - q}} \Biggr)^{\frac{1}{q}}. $$
(35)

5 Conclusions

In this paper, we present a new discrete Mulholland-type inequality in the whole plane with a best possible constant factor that is similar to that in (4) via introducing multi-parameters, applying weight coefficients, and using Hermite–Hadamard’s inequality in Theorem 1 and Theorem 2. Moreover, the equivalent forms, some particular cases, and the operator expressions are considered. The lemmas and theorems provide an extensive account of this type of inequalities.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH
2.
go back to reference Mitrinović, D.S., Pecarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) CrossRefMATH Mitrinović, D.S., Pecarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) CrossRefMATH
3.
4.
go back to reference Hong, Y.: All-sided generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–626 (2001) MathSciNetMATH Hong, Y.: All-sided generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–626 (2001) MathSciNetMATH
5.
go back to reference Milovanović, G.V., Rassias, M.Th. (eds.): Analytic Number Theory, Approximation Theory and Special Functions. Springer, Berlin (2014) MATH Milovanović, G.V., Rassias, M.Th. (eds.): Analytic Number Theory, Approximation Theory and Special Functions. Springer, Berlin (2014) MATH
6.
go back to reference Rassias, M.Th., Yang, B.: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800–813 (2014) MathSciNetMATH Rassias, M.Th., Yang, B.: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800–813 (2014) MathSciNetMATH
7.
go back to reference Rassias, M.Th., Yang, B.: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263–277 (2013) MathSciNetMATH Rassias, M.Th., Yang, B.: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263–277 (2013) MathSciNetMATH
8.
go back to reference Krnić, M., Pečarić, J.E.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005) MathSciNetMATH Krnić, M., Pečarić, J.E.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005) MathSciNetMATH
9.
go back to reference Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011) MathSciNetCrossRefMATH Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011) MathSciNetCrossRefMATH
10.
go back to reference Agarwal, R.P., O’Regan, D., Saker, S.H.: Some Hardy-type inequalities with weighted functions via Opial type inequalities. Adv. Dyn. Syst. Appl. 10, 1–9 (2015) MathSciNet Agarwal, R.P., O’Regan, D., Saker, S.H.: Some Hardy-type inequalities with weighted functions via Opial type inequalities. Adv. Dyn. Syst. Appl. 10, 1–9 (2015) MathSciNet
11.
go back to reference Adiyasuren, V., Tserendorj, B., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016) MathSciNetCrossRefMATH Adiyasuren, V., Tserendorj, B., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016) MathSciNetCrossRefMATH
12.
go back to reference Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007) CrossRefMATH Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007) CrossRefMATH
13.
14.
go back to reference Huang, Q., Yang, B.: A more accurate half-discrete Hilbert inequality with a nonhomogeneous kernel. J. Funct. Spaces Appl. 2013, Article ID 628250 (2013) MathSciNetMATH Huang, Q., Yang, B.: A more accurate half-discrete Hilbert inequality with a nonhomogeneous kernel. J. Funct. Spaces Appl. 2013, Article ID 628250 (2013) MathSciNetMATH
15.
go back to reference He, B., Wang, Q.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431(2), 889–902 (2015) MathSciNetCrossRefMATH He, B., Wang, Q.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431(2), 889–902 (2015) MathSciNetCrossRefMATH
16.
go back to reference Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016) MathSciNetMATH Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016) MathSciNetMATH
17.
18.
go back to reference Zhong, Y., Yang, B., Chen, Q.: A more accurate Mulholland-type inequality in the whole plane. J. Inequal. Appl. 2017, Article ID 315 (2017) MathSciNetCrossRefMATH Zhong, Y., Yang, B., Chen, Q.: A more accurate Mulholland-type inequality in the whole plane. J. Inequal. Appl. 2017, Article ID 315 (2017) MathSciNetCrossRefMATH
19.
go back to reference Yang, B.: A more accurate multidimensional Hardy–Hilbert’s inequality. J. Appl. Anal. Comput. 8(2), 559–573 (2018) MathSciNet Yang, B.: A more accurate multidimensional Hardy–Hilbert’s inequality. J. Appl. Anal. Comput. 8(2), 559–573 (2018) MathSciNet
20.
go back to reference Kuang, J.: Applied Inequalities. Shangdong Science Technic Press, Jinan (2010) (in Chinese) Kuang, J.: Applied Inequalities. Shangdong Science Technic Press, Jinan (2010) (in Chinese)
Metadata
Title
On a new discrete Mulholland-type inequality in the whole plane
Authors
Bicheng Yang
Qiang Chen
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1777-9

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner