Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

On a reverse Mulholland’s inequality in the whole plane

Authors: Aizhen Wang, Bicheng Yang

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

By introducing multi-parameters, applying the weight coefficients and Hermite–Hadamard’s inequality, we give a reverse of the extended Mulholland inequality in the whole plane with the best possible constant factor. The equivalent forms and a few particular cases are also considered.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Assuming that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(a_{n},b_{n}\geq0\), \(0<\sum_{n=1}^{\infty}a_{n}^{p}<\infty\), and \(0<\sum_{n=1}^{\infty }b_{n}^{q}<\infty\), we have the following Hardy–Hilbert inequality (cf. [1]):
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac{\pi}{\sin(\pi/p)} \Biggl( \sum_{n=1}^{\infty}a_{n}^{p} \Biggr) ^{1/p} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{1/q}, $$
(1)
where the constant factor \(\frac{\pi}{\sin(\pi/p)}\) is the best possible. We still have the following Mulholland inequality with the same best possible constant factor \(\frac{\pi}{\sin(\pi/p)}\) (cf. Theorem 343 of [1], replacing \(\frac{a_{m}}{m}\), \(\frac{b_{n}}{n}\) by \(a_{m}\), \(b_{n}\)):
$$ \sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac{a_{m}b_{n}}{\ln mn}< \frac{\pi }{\sin(\pi/p)} \Biggl( \sum_{n=2}^{\infty}\frac{a_{m}^{p}}{m^{1-p}} \Biggr) ^{1/p} \Biggl( \sum_{n=2}^{\infty} \frac{b_{n}^{q}}{n^{1-q}} \Biggr) ^{1/q}. $$
(2)
Inequalities (1)–(2) are important in the analysis and its applications (cf. [1, 2]).
In 2007, Yang [3] first gave a Hilbert-type integral inequality in the whole plane as follows:
$$\begin{aligned} & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\frac{f(x)g(y)}{(1+e^{x+y})^{\lambda}}\,dx\,dy \\ &\quad < B \biggl(\frac{\lambda}{2},\frac{\lambda}{2} \biggr) \biggl( \int_{-\infty}^{\infty }e^{-\lambda x}f^{2}(x)\,dx \int_{-\infty}^{\infty}e^{-\lambda y}f^{2}(y)\,dy \biggr)^{\frac{1}{2}}, \end{aligned}$$
(3)
where the constant factor \(B(\frac{\lambda}{2},\frac{\lambda}{2})\) (\(\lambda>0\)) is the best possible. Some new results on inequalities (1)–(3) were provided by [424]. In 2016, Yang and Chen [25] gave a more accurate extension of (1) in the whole plane as follows:
$$\begin{aligned} &\sum_{ \vert n \vert =1}^{\infty}\sum _{ \vert m \vert =1}^{\infty}\frac{a_{m}b_{n}}{ ( \vert m-\xi \vert + \vert n-\eta \vert ) ^{\lambda}} \\ &\quad < 2B ( \lambda _{1},\lambda_{2} ) \Biggl[ \sum _{ \vert m \vert =1}^{\infty} \vert m-\xi \vert ^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert =1}^{\infty} \vert n-\eta \vert ^{q(1-\lambda_{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(4)
where the constant factor \(2B ( \lambda_{1},\lambda_{2} ) \) (\(0<\lambda_{1},\lambda_{2}\leq1\), \(\lambda_{1}+\lambda_{2}=\lambda \), \(\xi , \eta\in{[} 0,\frac{1}{2}]\)) is the best possible. Another result was provided by Xin et al. [26].
In this paper, by introducing multi-parameters, applying the weight coefficients and Hermite–Hadamard’s inequality, we give a reverse of the extension of Mulholland’s inequality (2) in the whole plane with the best possible constant factor similar to the reverse of (4). The equivalent forms and a few particular cases are also considered.

2 Some lemmas

In the following, we agree that \(0< p<1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\lambda_{1},\lambda_{2}>0\), \(\lambda_{1}+\lambda_{2}=\lambda\leq 1\), \(\alpha,\beta\in{[} \arccos\frac{1}{3},\frac{\pi}{2}]\), \(\xi ,\eta \in{[} 0,\frac{1}{2}]\), and
$$ H_{\gamma}(\lambda_{1}):=\frac{2\pi\csc^{2}\gamma}{\lambda\sin (\frac{\pi\lambda_{1}}{\lambda})}\quad (\gamma= \alpha,\beta). $$
(5)
Remark 1
In view of the conditions that \(\alpha,\beta\in{[} \arccos\frac{1}{3},\frac{\pi}{2}]\), \(\xi,\eta\in{[} 0,\frac{1}{2}]\), it follows that \((\frac{3}{2}\pm\eta)(1\mp\cos\beta)\geq1\) and \((\frac{3}{2}\pm\xi)(1\mp\cos\alpha)\geq1\).
We set the following functions:
$$ A_{\alpha}(\xi,x)= \vert x-\xi \vert +(x-\xi)\cos\alpha, $$
\(B_{\beta}(\eta,y)= \vert y-\eta \vert +(y-\eta)\cos\beta\), and
$$ H(x,y):=\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,x)+\ln^{\lambda }B_{\beta }(\eta,y)}\quad \biggl( \vert x \vert , \vert y \vert > \frac{3}{2} \biggr). $$
(6)
Definition 1
Define two weight coefficients as follows:
$$\begin{aligned} &\omega(\lambda_{2},m):=\sum_{ \vert n \vert =2}^{\infty} \frac{H(m,n)}{B_{\beta}(\eta,n)}\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi ,m)}{\ln^{1-\lambda_{2}}B_{\beta}(\eta,n)}, \quad \vert m \vert \in \mathbf{N} \backslash \{1\}, \end{aligned}$$
(7)
$$\begin{aligned} &\varpi(\lambda_{1},n):=\sum_{ \vert m \vert =2}^{\infty} \frac{H(m,n)}{A_{\alpha}(\xi,m)}\frac{\ln^{\lambda_{2}}B_{\beta}(\eta ,n)}{\ln^{1-\lambda_{1}}A_{\alpha}(\xi,m)}, \quad \vert n \vert \in \mathbf{N} \backslash \{1\}, \end{aligned}$$
(8)
where \(\sum_{ \vert j \vert =2}^{\infty}\cdots =\sum_{j=-2}^{-\infty}\cdots+\sum_{j=2}^{\infty}\cdots\) (\(j=m,n\)).
Lemma 1
(cf. [26])
Suppose that \(g(t)\) (>0) is strictly decreasing in \((1,\infty)\), satisfying \(\int_{1}^{\infty}g(t)\,dt\in \mathbf{R}_{+}\). We have
$$ \int_{2}^{\infty}g(t)\,dt< \sum _{n=2}^{\infty}g(n)< \int_{1}^{\infty}g(t)\,dt. $$
(9)
If \((-1)^{i}g(t)>0\) (\(i=0,1,2\); \(t\in(\frac{3}{2},\infty)\)), \(\int_{\frac {3}{2}}^{\infty}g(t)\,dt\in\mathbf{R}_{+}\), then we have the following Hermite–Hadamard inequality (cf. [27]):
$$ \sum_{n=2}^{\infty}g(n)< \int_{\frac{3}{2}}^{\infty}g(t)\,dt. $$
(10)
Lemma 2
For \(0<\lambda\leq1\), \(0<\lambda_{2}<1\), the following inequalities are valid:
$$ H_{\beta}(\lambda_{1}) \bigl(1-\theta(\lambda _{2},m) \bigr)< \omega(\lambda_{2},m)< H_{\beta}( \lambda_{1}),\quad \vert m \vert \in\mathbf{N}\backslash \{1\}, $$
(11)
where
$$\begin{aligned} \theta(\lambda_{2},m) :=&\frac{\lambda}{\pi}\sin \biggl( \frac{\pi\lambda_{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln[(2+\eta)(1+\cos\beta)]}{\ln A_{\alpha }(\xi,m)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{2}}A_{\alpha}(\xi,m)} \biggr) \in(0,1). \end{aligned}$$
(12)
Proof
For \(\vert m \vert \in\mathbf{N}\backslash\{ 1\}\), we set the following functions:
$$\begin{aligned} &H^{(1)}(m,y) :=\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,m)+\ln ^{\lambda }[(y-\eta)(\cos\beta-1)]},\quad y< -\frac{3}{2}, \\ &H^{(2)}(m,y) :=\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,m)+\ln ^{\lambda }[(y-\eta)(\cos\beta+1)]},\quad y>\frac{3}{2}, \end{aligned}$$
wherefrom
$$ H^{(1)}(m,-y)=\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,m)+\ln ^{\lambda }[(y+\eta)(1-\cos\beta)]},\quad y>\frac{3}{2}. $$
We find
$$\begin{aligned} \omega(\lambda_{2},m) =&\sum_{n=-2}^{-\infty} \frac{H^{(1)}(m,n)\ln ^{\lambda_{1}}A_{\alpha}(\xi,m)}{(n-\eta)(\cos\beta-1)\ln ^{1-\lambda _{2}} [ (n-\eta)(\cos\beta-1) ] } \\ &{}+\sum_{n=2}^{\infty}\frac{H^{(2)}(m,n)\ln^{\lambda_{1}}A_{\alpha }(\xi ,m)}{(n-\eta)(1+\cos\beta)\ln^{1-\lambda_{2}} [ (n-\eta)(1+\cos \beta) ] } \\ =&\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi,m)}{1-\cos\beta}\sum_{n=2}^{\infty} \frac{H^{(1)}(m,-n)}{(n+\eta)\ln^{1-\lambda _{2}}[(n+\eta)(1-\cos\beta)]} \\ &{}+\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi,m)}{1+\cos\beta}\sum_{n=2}^{\infty} \frac{H^{(2)}(m,n)}{(n-\eta)\ln^{1-\lambda _{2}}[(n-\eta)(1+\cos\beta)]}. \end{aligned}$$
(13)
In virtue of \(0<\lambda\leq1\), \(0<\lambda_{2}<1\), we find that for \(y>\frac{3}{2}\),
$$\begin{aligned} &\frac{d}{dy}\frac{H^{(i)}(m,(-1)^{i}y)}{(y-(-1)^{i}\eta)\ln ^{1-\lambda _{2}}[(y-(-1)^{i}\eta)(1+(-1)^{i}\cos\beta)]} < 0, \\ &\frac{d^{2}}{dy^{2}}\frac{H^{(i)}(m,(-1)^{i}y)}{(y-(-1)^{i}\eta)\ln ^{1-\lambda_{2}}[(y-(-1)^{i}\eta)(1+(-1)^{i}\cos\beta)]} >0\quad (i=1.2), \end{aligned}$$
it follows that \(\frac{H^{(i)}(m,(-1)^{i}y)}{(y-(-1)^{i}\eta)\ln ^{1-\lambda_{2}}[(y-(-1)^{i}\eta)(1+(-1)^{i}\cos\beta)]}\) (\(i=1.2\)) are strictly decreasing and strictly convex in \((\frac{3}{2},\infty)\). By (10) and (13) we find
$$\begin{aligned} \omega(\lambda_{2},m) < &\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi ,m)}{1-\cos\beta} \int_{3/2}^{\infty}\frac{H^{(1)}(m,-y)\,dy}{(y+\eta)\ln ^{1-\lambda_{2}}[(y+\eta)(1-\cos\beta)]} \\ &{}+\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi,m)}{1+\cos\beta}\int_{3/2}^{\infty}\frac{H^{(2)}(m,y)\,dy}{(y-\eta)\ln^{1-\lambda _{2}}[(y-\eta)(1+\cos\beta)]}. \end{aligned}$$
Setting \(u=\frac{\ln[(y+\eta)(1-\cos\beta)]}{\ln A_{\alpha}(\xi ,m)}\) (\(u=\frac{\ln[(y-\eta)(1+\cos\beta)]}{\ln A_{\alpha}(\xi,m)}\)) in the above first (second) integral, in view of Remark 1, by simplifications, we obtain
$$\begin{aligned} \omega(\lambda_{2},m) < & \biggl( \frac{1}{1-\cos\beta}+ \frac{1}{1+\cos \beta} \biggr) \int_{0}^{\infty}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&\frac{2\csc^{2}\beta}{\lambda} \int_{0}^{\infty}\frac{v^{(\lambda _{2}/\lambda)-1}\,dv}{1+v}= \frac{2\pi\csc^{2}\beta}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})}=H_{\beta}(\lambda_{1}). \end{aligned}$$
By (9) and (13), in the same way, we still have
$$\begin{aligned} \omega(\lambda_{2},m) >&\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi ,m)}{1-\cos\beta} \int_{2}^{\infty}\frac{H^{(1)}(m,-y)\,dy}{(y+\eta)\ln ^{1-\lambda_{2}}[(y+\eta)(1-\cos\beta)]} \\ &{}+\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi,m)}{1+\cos\beta}\int_{2}^{\infty}\frac{H^{(2)}(m,y)\,dy}{(y-\eta)\ln^{1-\lambda _{2}}[(y-\eta)(1+\cos\beta)]} \\ \geq& \biggl( \frac{1}{1-\cos\beta}+\frac{1}{1+\cos\beta} \biggr) \int_{\frac{\ln[(2+\eta)(1+\cos\beta)]}{\ln A_{\alpha}(\xi ,m)}}^{\infty}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&H_{\beta}(\lambda_{1})-2\csc^{2}\beta \int_{0}^{\frac{\ln[(2+\eta )(1+\cos\beta)]}{\ln A_{\alpha}(\xi,m)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&H_{\beta}(\lambda_{1}) \bigl(1-\theta(\lambda _{2},m) \bigr)>0, \end{aligned}$$
where \(\theta(\lambda_{2},m)\) is indicated by (12). It follows that \(\theta(\lambda_{2},m)<1\) and
$$\begin{aligned} 0 < &\theta(\lambda_{2},m) \\ < &\frac{\lambda}{\pi}\sin \biggl( \frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln[(2+\eta)(1+\cos\beta)]}{\ln A_{\alpha}(\xi,m)}}u^{\lambda_{2}-1}\,du \\ =&\frac{\lambda}{\pi\lambda_{2}}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \biggl( \frac{\ln[(2+\eta)(1+\cos\beta)]}{\ln A_{\alpha}(\xi,m)} \biggr) ^{\lambda_{2}}. \end{aligned}$$
Hence, (11) and (12) are valid. □
In the same way, for \(0<\lambda\leq1\), \(0<\lambda_{1}<1\), we still have the following.
Lemma 3
The following inequalities are valid:
$$ H_{\alpha}(\lambda_{1}) \bigl(1-\widetilde{\theta}(\lambda _{1},n) \bigr)< \varpi(\lambda_{1},n)< H_{\alpha}( \lambda_{1}), \quad \vert n \vert \in\mathbf{N}\backslash\{1\}, $$
(14)
where
$$\begin{aligned} \widetilde{\theta}(\lambda_{1},n) :=&\frac{\lambda}{\pi}\sin \biggl( \frac{\pi \lambda_{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln[(2+\xi)(1+\cos\alpha)]}{\ln B_{\beta}(\eta,n)}}\frac{u^{\lambda_{1}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{1}}B_{\beta}(\eta,n)} \biggr) \in(0,1). \end{aligned}$$
(15)
Lemma 4
If \((\zeta,\gamma)=(\xi,\alpha)\) (or \((\eta ,\beta)\)), \(\rho>0\), then we have
$$\begin{aligned} h_{\rho}(\zeta,\gamma) :=&\sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{-1-\rho} [ \vert n-\zeta \vert +(n-\zeta)\cos\gamma ] }{ [ \vert n-\zeta \vert +(n-\zeta)\cos\gamma ] } \\ =&\frac{1}{\rho} \bigl(2\csc^{2}\gamma+o(1) \bigr)\quad \bigl( \rho\rightarrow0^{+} \bigr) . \end{aligned}$$
(16)
Proof
Still by (10) we find
$$\begin{aligned} h_{\rho}(\zeta,\gamma) =&\sum_{n=-2}^{-\infty} \frac{\ln^{-1-\rho }[(n-\zeta)(\cos\gamma-1)]}{(n-\zeta)(\cos\gamma-1)} \\ &{}+\sum_{n=2}^{\infty}\frac{\ln^{-1-\rho}[(n-\zeta)(\cos\gamma +1)]}{(n-\zeta)(\cos\gamma+1)} \\ =&\sum_{n=2}^{\infty} \biggl\{ \frac{\ln^{-1-\rho}[(n+\zeta)(1-\cos \gamma)]}{(n+\zeta)(1-\cos\gamma)}+\frac{\ln^{-1-\rho}[(n-\zeta )(\cos \gamma+1)]}{(n-\zeta)(\cos\gamma+1)} \biggr\} \\ \leq& \int_{\frac{3}{2}}^{\infty} \biggl\{ \frac{\ln^{-1-\rho }[(y+\zeta )(1-\cos\gamma)]}{(y+\zeta)(1-\cos\gamma)}+ \frac{\ln^{-1-\rho }[(y-\zeta)(\cos\gamma+1)]}{(y-\zeta)(\cos\gamma+1)} \biggr\} \,dy \\ =&\frac{1}{\rho} \biggl\{ \frac{\ln^{-\rho}[(\frac{3}{2}+\zeta )(1-\cos \gamma)]}{1-\cos\gamma}+\frac{\ln^{-\rho}[(\frac{3}{2}-\zeta )(1+\cos \gamma)]}{1+\cos\gamma} \biggr\} \\ =&\frac{1}{\rho} \biggl\{ \frac{1}{1-\cos\gamma}+\frac {1}{1+\cos\gamma}+o_{1}(1) \biggr\} \quad \bigl(\rho\rightarrow0^{+} \bigr). \end{aligned}$$
By (9), we still can find that
$$\begin{aligned} &h_{\rho}(\zeta,\gamma) \\ &\quad =\sum_{n=2}^{\infty} \biggl\{ \frac{\ln^{-1-\rho}[(n+\zeta)(1-\cos \gamma)]}{(n+\zeta)(1-\cos\gamma)}+\frac{\ln^{-1-\rho}[(n-\zeta )(\cos \gamma+1)]}{(n-\zeta)(\cos\gamma+1)} \biggr\} \\ &\quad \geq \int_{2}^{\infty} \biggl\{ \frac{\ln^{-1-\rho}[(y+\zeta)(1-\cos \gamma)]}{(y+\zeta)(1-\cos\gamma)}+ \frac{\ln^{-1-\rho}[(y-\zeta)(\cos \gamma+1)]}{(y-\zeta)(\cos\gamma+1)} \biggr\} \,dy \\ &\quad = \frac{1}{\rho} \biggl\{ \frac{\ln^{-\rho}[(2+\zeta)(1-\cos \gamma)]}{1-\cos\gamma}+\frac{\ln^{-\rho}[(2-\zeta)(1+\cos\gamma )]}{1+\cos \gamma} \biggr\} \\ &\quad = \frac{1}{\rho} \biggl\{ \frac{1}{1-\cos\gamma}+\frac {1}{1+\cos\gamma}+o_{2}(1) \biggr\} \quad \bigl(\rho\rightarrow0^{+} \bigr). \end{aligned}$$
Hence, we prove that (16) is valid. □

3 Main results and a few particular cases

We also define
$$ H(\lambda_{1}):=H_{\beta}^{1/p}(\lambda _{1})H_{\alpha}^{1/q}(\lambda_{1})= \frac{2\pi\csc^{2/p}\beta\csc^{2/q}\alpha}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})}. $$
(17)
Theorem 1
Suppose that \(a_{m},b_{n}\geq0\) (\(\vert m \vert , \vert n \vert \in\mathbf{N}\backslash\{1\}\)) and
$$\begin{aligned} &0 < \sum_{ \vert m \vert =2}^{\infty}\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p}< \infty, \\ &0 < \sum_{ \vert n \vert =2}^{\infty}\frac{\ln^{q(1-\lambda _{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q}< \infty. \end{aligned}$$
We have the following reverse equivalent inequalities:
$$\begin{aligned} &\begin{aligned}[b] I:={}&\sum_{ \vert n \vert =2}^{\infty} \sum_{ \vert m \vert =2}^{\infty}\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,m)+\ln^{\lambda }B_{\beta}(\eta,n)}a_{m}b_{n} \\ >{}&H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(18)
$$\begin{aligned} &\begin{aligned}[b] J :={}& \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{p\lambda _{2}-1}B_{\beta}(\eta,n)}{B_{\beta}(\eta,n)} \Biggl( \sum_{ \vert m \vert =2}^{\infty} \frac{a_{m}}{\ln^{\lambda}A_{\alpha}(\xi ,m)+\ln^{\lambda}B_{\beta}(\eta,n)} \Biggr) ^{p} \Biggr] ^{\frac {1}{p}} \\ >{}&H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{1/p}, \end{aligned} \end{aligned}$$
(19)
$$\begin{aligned} &\begin{aligned}[b] L :={}& \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{\ln^{q\lambda _{1}-1}A_{\alpha}(\xi,m)}{(1-\theta(\lambda_{2},m))^{q-1}A_{\alpha }(\xi ,m)} \\ &{}\times \Biggl( \sum_{ \vert n \vert =2}^{\infty} \frac{1}{\ln ^{\lambda}A_{\alpha}(\xi,m)+\ln^{\lambda}B_{\beta}(\eta,n)}b_{n} \Biggr) ^{q} \Biggr] ^{\frac{1}{q}} \\ >{}&H(\lambda_{1}) \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta ,n))^{1-q}}b_{n}^{q} \Biggr] ^{1/q}. \end{aligned} \end{aligned}$$
(20)
In particular, (i) for \(\alpha=\beta=\frac{\pi}{2}\), \(\xi,\eta\in {}[ 0,\frac{1}{2}]\), setting
$$\begin{aligned} \theta_{1}(\lambda_{2},m) :=&\frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln(2+\eta)}{\ln \vert m-\xi \vert }}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{2}} \vert m-\xi \vert } \biggr) \in(0,1), \end{aligned}$$
(21)
we have the following reverse equivalent inequalities:
$$\begin{aligned} &\begin{aligned}[b] &\sum_{ \vert n \vert =2}^{\infty}\sum _{ \vert m \vert =2}^{\infty}\frac{1}{\ln^{\lambda} \vert m-\xi \vert +\ln ^{\lambda} \vert n-\eta \vert }a_{m}b_{n} \\ &\quad >\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})} \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\theta_{1}(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1} \vert m-\xi \vert }{ \vert m-\xi \vert ^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1} \vert n-\eta \vert }{ \vert n-\eta \vert ^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(22)
$$\begin{aligned} &\begin{aligned}[b] & \Biggl\{ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{p\lambda _{2}-1} \vert n-\eta \vert }{ \vert n-\eta \vert } \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{a_{m}}{\ln^{\lambda } \vert m-\xi \vert +\ln^{\lambda} \vert n-\eta \vert } \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \\ &\quad >\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})} \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\theta_{1}(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1} \vert m-\xi \vert }{ \vert m-\xi \vert ^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}, \end{aligned} \end{aligned}$$
(23)
$$\begin{aligned} &\begin{aligned}[b] & \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{\ln^{q\lambda _{1}-1} \vert m-\xi \vert }{(1-\theta_{1}(\lambda_{2},m))^{q-1} \vert m-\xi \vert } \Biggl( \sum_{ \vert n \vert =2}^{\infty} \frac{1}{\ln ^{\lambda} \vert m-\xi \vert +\ln^{\lambda} \vert n-\eta \vert }b_{n} \Biggr) ^{q} \Biggr] ^{\frac{1}{q}} \\ &\quad >\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})} \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda _{2})-1} \vert n-\eta \vert }{ \vert n-\eta \vert ^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned} \end{aligned}$$
(24)
(ii) For \(\xi,\eta=0\), \(\alpha,\beta\in{[} \arccos\frac{1}{3},\frac{\pi}{2}]\), setting
$$\begin{aligned} \theta_{2}(\lambda_{2},m) :=&\frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln2(1+\cos\beta)}{\ln( \vert m \vert +m\cos \alpha)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{2}}( \vert m \vert +m\cos \alpha)} \biggr) \in(0,1), \end{aligned}$$
(25)
we have the following equivalent inequalities:
$$\begin{aligned} &\begin{aligned}[b] &\sum_{ \vert n \vert =2}^{\infty}\sum _{ \vert m \vert =2}^{\infty}\frac{a_{m}b_{n}}{\ln^{\lambda}( \vert m \vert +m\cos\alpha)+\ln^{\lambda}( \vert n \vert +n\cos\beta)} \\ &\quad >H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta_{2}(\lambda_{2},m) \bigr) \frac{\ln^{p(1-\lambda_{1})-1}( \vert m \vert +m\cos\alpha)}{( \vert m \vert +m\cos\alpha)^{1-p}} a_{m}^{p} \Biggr] ^{1/p} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}( \vert n \vert +n\cos\beta)}{( \vert n \vert +n\cos\beta)^{1-q}}b_{n}^{q} \Biggr] ^{1/q}, \end{aligned} \end{aligned}$$
(26)
$$\begin{aligned} &\begin{aligned}[b] & \Biggl\{ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{p\lambda _{2}-1}( \vert n \vert +n\cos\beta)}{ \vert n \vert +n\cos\beta} \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{a_{m}}{\ln^{\lambda}( \vert m \vert +m\cos\alpha)+\ln^{\lambda }( \vert n \vert +n\cos\beta)} \Biggr] ^{p} \Biggr\} ^{\frac {1}{p}} \\ &\quad >H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta_{2}(\lambda_{2},m) \bigr) \frac{\ln^{p(1-\lambda_{1})-1}( \vert m \vert +m\cos\alpha)}{( \vert m \vert +m\cos\alpha)^{1-p}} a_{m}^{p} \Biggr] ^{\frac{1}{p}}, \end{aligned} \end{aligned}$$
(27)
$$\begin{aligned} &\begin{aligned}[b] & \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{\ln^{q\lambda _{1}-1}( \vert m \vert +m\cos\alpha)}{(1-\theta_{2}(\lambda _{2},m))^{q-1}( \vert m \vert +m\cos \alpha)} \\ &\qquad {}\times \Biggl( \sum_{ \vert n \vert =2}^{\infty} \frac{1}{\ln ^{\lambda}( \vert m \vert +m\cos\alpha)+\ln^{\lambda}( \vert n \vert +n\cos\beta)}b_{n} \Biggr) ^{q} \Biggr] ^{\frac{1}{q}} \\ &\quad > H(\lambda_{1}) \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda _{2})-1}( \vert n \vert +n\cos\beta)}{( \vert n \vert +n\cos \beta)^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned} \end{aligned}$$
(28)
Proof
By the reverse Hölder inequality with weight (cf. [28]) and (8), we find
$$\begin{aligned} & \Biggl( \sum_{ \vert m \vert =2}^{\infty}H(m,n)a_{m} \Biggr) ^{p} \\ &\quad = \Biggl\{ \sum_{ \vert m \vert =2}^{\infty}H(m,n) \biggl[ \frac{(A_{\alpha}(\xi,m))^{1/q}\ln^{(1-\lambda_{1})/q}A_{\alpha}(\xi ,m)}{\ln ^{(1-\lambda_{2})/p}B_{\beta}(\eta,n)}a_{m} \biggr] \\ &\qquad {}\times \biggl[ \frac{\ln^{(1-\lambda_{2})/p}B_{\beta}(\eta,n)}{(A_{\alpha}(\xi,m))^{1/q}\ln^{(1-\lambda_{1})/q}A_{\alpha}(\xi,m)} \biggr] \Biggr\} ^{p} \\ &\quad \geq \sum_{ \vert m \vert =2}^{\infty}H(m,n) \frac{(A_{\alpha }(\xi,m))^{p/q}\ln^{(1-\lambda_{1})p/q}A_{\alpha}(\xi,m)}{\ln ^{1-\lambda_{2}}B_{\beta}(\eta,n)}a_{m}^{p} \\ &\qquad {}\times \Biggl[ \sum_{ \vert m \vert =2}^{\infty}H(m,n) \frac{\ln ^{(1-\lambda_{2})q/p}B_{\beta}(\eta,n)}{A_{\alpha}(\xi,m)\ln ^{1-\lambda_{1}}A_{\alpha}(\xi,m)} \Biggr] ^{p-1} \\ &\quad =\frac{(\varpi(\lambda_{1},n))^{p-1}B_{\beta}(\eta,n)}{\ln ^{p\lambda _{2}-1}B_{\beta}(\eta,n)}\sum_{ \vert m \vert =2}^{\infty} \frac{H(m,n)(A_{\alpha}(\xi,m))^{\frac{p}{q}}\ln^{(1-\lambda_{1})\frac {p}{q}}A_{\alpha}(\xi,m)}{B_{\beta}(\eta,n)\ln^{1-\lambda_{2}}B_{\beta }(\eta,n)}a_{m}^{p}. \end{aligned}$$
By (14), in view of \(p-1<0\), it follows that
$$\begin{aligned} J >&H_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert n \vert =2}^{\infty}\sum_{ \vert m \vert =2}^{\infty} \frac{H(m,n)(A_{\alpha}(\xi,m))^{p/q}\ln^{(1-\lambda_{1})p/q}A_{\alpha }(\xi ,m)}{B_{\beta}(\eta,n)\ln^{1-\lambda_{2}}B_{\beta}(\eta ,n)}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&H_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert m \vert =2}^{\infty}\sum_{ \vert n \vert =2}^{\infty} \frac{H(m,n)(A_{\alpha}(\xi,m))^{p/q}\ln^{(1-\lambda_{1})p/q}A_{\alpha }(\xi ,m)}{B_{\beta}(\eta,n)\ln^{1-\lambda_{2}}B_{\beta}(\eta ,n)}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&H_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert m \vert =2}^{\infty}\omega(\lambda_{2},m) \frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned}$$
(29)
By (11) and (17), we have (19).
Using the reverse Hölder inequality again, we have
$$\begin{aligned} I =&\sum_{ \vert n \vert =2}^{\infty} \Biggl[ \frac{\ln^{\lambda _{2}-(1/p)}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1/p}}\sum_{ \vert m \vert =2}^{\infty}H(m,n)a_{m} \Biggr] \biggl[ \frac{\ln ^{(1/p)-\lambda_{2}}B_{\beta}(\eta,n)}{(B_{\beta}(\eta ,n))^{-1/p}}b_{n} \biggr] \\ \geq&J \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(30)
and then by (19) we have (18).
On the other hand, assuming that (18) is valid, we set
$$ b_{n}:=\frac{\ln^{p\lambda_{2}-1}B_{\beta}(\eta,n)}{B_{\beta }(\eta,n)} \Biggl( \sum _{ \vert m \vert =2}^{\infty}H(m,n)a_{m} \Biggr) ^{p-1},\quad \vert n \vert \in\mathbf{N}\backslash\{1\}, $$
and find
$$ J= \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda _{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{p}}. $$
By (29) it follows that \(J>0\). If \(J=\infty\), then (19) is trivially valid; if \(J<\infty\), then we have
$$\begin{aligned} &\begin{aligned} &\sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda _{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \\ &\quad =J^{p}=I \\ &\quad >H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \\ &\begin{aligned} J &= \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{p}} \\ &> H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned} \end{aligned}$$
Hence (19) is valid, which is equivalent to (18).
We have proved that (18) is valid. Then we set
$$ a_{m}:= \frac{\ln^{q\lambda_{1}-1}A_{\alpha}(\xi,m)}{(1-\theta (\lambda _{2},m))^{q-1}A_{\alpha}(\xi,m)} \Biggl( \sum _{ \vert n \vert =2}^{\infty}H(m,n)b_{n} \Biggr) ^{q-1},\quad \vert m \vert \in\mathbf{N}\backslash\{ 1\}, $$
and find
$$ L= \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\theta( \lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha }(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{q}}. $$
If \(L=0\), then (20) is impossible, namely \(L>0\). If \(L=\infty \), then (20) is trivially valid; if \(L<\infty\), then we have
$$\begin{aligned} &\begin{aligned} &\sum_{ \vert m \vert =2}^{\infty} \bigl(1- \theta(\lambda _{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1}A_{\alpha}(\xi,m)}{(A_{\alpha}(\xi ,m))^{1-p}}a_{m}^{p} \\ &\quad =L^{q}=I \\ &\quad >H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \\ &\begin{aligned} L &= \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\theta (\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha }(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{q}} \\ &>H(\lambda_{1}) \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta ,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned} \end{aligned}$$
Hence, (20) is valid.
On the other hand, assuming that (20) is valid, using the reverse Hölder inequality, we have
$$\begin{aligned} I =&\sum_{ \vert m \vert =2}^{\infty} \biggl[ \frac{\ln ^{(1/q)-\lambda_{1}}A_{\alpha}(\xi,m)}{(1-\theta(\lambda _{2},m))^{-1/p}(A_{\alpha}(\xi,m))^{-1/q}}a_{m} \biggr] \\ &{}\times \Biggl[ \frac{\ln^{\lambda_{1}-(1/q)}A_{\alpha}(\xi,m)}{(1-\theta(\lambda_{2},m))^{1/p}(A_{\alpha}(\xi,m))^{1/q}}\sum _{ \vert n \vert =2}^{\infty}H(m,n)b_{n} \Biggr] \\ \geq& \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1- \theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi,m)}{(A_{\alpha }(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}L, \end{aligned}$$
(31)
and then by (20) we have (18), which is equivalent to (20).
Therefore, inequalities (18), (19), and (20) are equivalent.
The theorem is proved. □
Theorem 2
With regards to the assumptions of Theorem 1, the constant factor \(H(\lambda_{1})\) in (18), (19), and (20) is the best possible.
Proof
For \(0<\varepsilon<p\lambda_{1}\), we set \(\widetilde {\lambda }_{1}=\lambda_{1}-\frac{\varepsilon}{p}\) (\(\in(0,1)\)), \(\widetilde {\lambda}_{2}=\lambda_{2}+\frac{\varepsilon}{p}\) (>0), and
$$\begin{aligned} &\widetilde{a}_{m}:=\frac{\ln^{\lambda_{1}-(\varepsilon /p)-1}A_{\alpha }(\xi,m)}{A_{\alpha}(\xi,m)}=\frac{\ln^{\widetilde{\lambda}_{1}-1}A_{\alpha}(\xi,m)}{A_{\alpha}(\xi,m)}\quad \bigl( \vert m \vert \in\mathbf{N}\backslash\{1\} \bigr), \\ &\widetilde{b}_{n}:=\frac{\ln^{\lambda_{2}-(\varepsilon /q)-1}B_{\beta }(\eta,n)}{B_{\beta}(\eta,n)}=\frac{\ln^{\widetilde{\lambda}_{2}-\varepsilon-1}B_{\beta}(\eta,n)}{B_{\beta}(\eta,n)}\quad \bigl( \vert n \vert \in\mathbf{N}\backslash\{ 1\} \bigr). \end{aligned}$$
By (16) and (14) we find
$$\begin{aligned} &\begin{aligned} \widetilde{I}_{1} := {}& \Biggl[ \sum _{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}} \widetilde{a}_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}\widetilde{b}_{n}^{q} \Biggr] ^{\frac{1}{q}} \\ ={}& \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{\ln ^{-1-\varepsilon}A_{\alpha}(\xi,m)}{A_{\alpha}(\xi,m)}-\sum_{ \vert m \vert =2}^{\infty} \frac{O(\ln^{-1-(\lambda_{2}+\varepsilon )}A_{\alpha}(\xi,m))}{A_{\alpha}(\xi,m)} \Biggr] ^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{-1-\varepsilon}B_{\beta}(\eta,n)}{B_{\beta}(\eta,n)} \Biggr] ^{\frac{1}{q}} \\ ={}&\frac{1}{\varepsilon} \bigl(2\csc^{2}\alpha+o(1)-\varepsilon O(1) \bigr)^{1/p} \bigl(2\csc^{2}\beta+\widetilde{o}(1) \bigr)^{1/q}\quad \bigl(\varepsilon\rightarrow0^{+} \bigr), \end{aligned} \\ &\begin{aligned} \widetilde{I} &:=\sum_{ \vert m \vert =2}^{\infty } \sum_{ \vert n \vert =2}^{\infty}H(m,n)\widetilde{a}_{m}\widetilde{b}_{n} \\ &=\sum_{ \vert n \vert =2}^{\infty}\sum _{ \vert m \vert =2}^{\infty}H(m,n)\frac{\ln^{\widetilde{\lambda}_{1}-1}A_{\alpha }(\xi ,m)\ln^{\widetilde{\lambda}_{2}-\varepsilon-1}B_{\beta}(\eta,n)}{A_{\alpha}(\xi,m)B_{\beta}(\eta,n)} \\ &=\sum_{ \vert n \vert =2}^{\infty}\varpi(\widetilde{ \lambda}_{1},n)\frac{\ln^{-1-\varepsilon}B_{\beta}(\eta,n)}{B_{\beta }(\eta,n)}< H_{\alpha}( \widetilde{\lambda}_{1})\sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{-1-\varepsilon}B_{\beta}(\eta,n)}{B_{\beta }(\eta,n)} \\ &=\frac{1}{\varepsilon}H_{\alpha} \biggl(\lambda_{1}- \frac{\varepsilon}{p} \biggr) \bigl(2\csc^{2}\beta+ \widetilde{o}(1) \bigr). \end{aligned} \end{aligned}$$
If there exists a positive number \(K\geq H(\lambda_{1})\) such that (18) is still valid when replacing \(H(\lambda_{1})\) by K, then, in particular, we have
$$ \varepsilon\widetilde{I}=\varepsilon\sum_{ \vert m \vert =2}^{\infty} \sum_{ \vert n \vert =2}^{\infty}H(m,n)\widetilde{a}_{m} \widetilde{b}_{n}>\varepsilon K\widetilde{I}_{1}. $$
In view of the above results, it follows that
$$\begin{aligned} &H_{\alpha} \biggl(\lambda_{1}-\frac{\varepsilon}{p} \biggr) \bigl(2\csc^{2}\beta+\widetilde{o}(1) \bigr) >K\cdot \bigl(2 \csc^{2}\alpha+o(1)-\varepsilon O(1) \bigr)^{1/p} \bigl(2 \csc^{2}\beta+\widetilde{o}(1) \bigr)^{1/q}, \end{aligned}$$
and then
$$ \frac{4\pi\csc^{2}\alpha}{\lambda\sin(\frac{\pi\lambda _{1}}{\lambda})}\csc^{2}\beta\geq2K\csc^{2/p}\alpha \csc^{2/q}\beta \quad \bigl(\varepsilon\rightarrow0^{+} \bigr), $$
namely
$$ H(\lambda_{1})=\frac{2\pi}{\lambda\sin(\frac{\pi\lambda _{1}}{\lambda})}\csc^{2/p}\beta\csc ^{2/q}\alpha\geq K. $$
Hence, \(K=H(\lambda_{1})\) is the best possible constant factor in (18).
The constant factor \(H(\lambda_{1})\) in (19) ((20)) is still the best possible. Otherwise we would reach a contradiction by (30) ((31)) that the constant factor in (18) is not the best possible. □
Remark 2
(i) For \(\xi=\eta=0\) in (22), setting
$$\begin{aligned} \widetilde{\theta}_{1}(\lambda_{2},m) :=& \frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda_{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln2}{\ln \vert m \vert }}\frac{u^{\lambda _{2}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{2}} \vert m \vert } \biggr) \in(0,1), \end{aligned}$$
we have the following new inequality with the best possible constant factor \(\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})}\):
$$\begin{aligned} &\sum_{ \vert n \vert =2}^{\infty}\sum _{ \vert m \vert =2}^{\infty}\frac{a_{m}b_{n}}{\ln^{\lambda} \vert m \vert +\ln ^{\lambda} \vert n \vert } \\ &\quad >\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})} \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\widetilde{\theta}_{1}(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1} \vert m \vert }{ \vert m \vert ^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1} \vert n \vert }{ \vert n \vert ^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(32)
It follows that (20) ((22)) is an extension of (29).
(ii) If \(a_{-m}=a_{m}\) and \(b_{-n}=b_{n}\) (\(m,n\in\mathbf{N}\backslash\{1\}\)), setting
$$\begin{aligned} & \theta_{2}(\lambda_{2},m) :=\frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln(2+\eta)}{\ln(m-\xi)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du =O \biggl( \frac{1}{\ln^{\lambda_{2}}(m-\xi)} \biggr) \in(0,1), \\ & \theta_{3}(\lambda_{2},m) :=\frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln(2+\eta)}{\ln(m+\xi)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du =O \biggl( \frac{1}{\ln^{\lambda_{2}}(m+\xi)} \biggr) \in(0,1), \end{aligned}$$
then (22) reduces to
$$\begin{aligned} &\sum_{n=2}^{\infty}\sum _{m=2}^{\infty} \biggl[ \frac{1}{\ln^{\lambda }(m-\xi)+\ln^{\lambda}(n-\eta)}+ \frac{1}{\ln^{\lambda}(m-\xi)+\ln ^{\lambda}(n+\eta)} \\ &\qquad {} +\frac{1}{\ln^{\lambda}(m+\xi)+\ln^{\lambda}(n-\eta)}+\frac{1 }{\ln^{\lambda}(m+\xi)+\ln^{\lambda}(n+\eta)} \biggr] a_{m}b_{n} \\ &\quad >\frac{2\pi}{\lambda\sin(\pi\lambda_{1}/\lambda)} \Biggl\{ \sum_{m=2}^{\infty} \biggl[ \bigl(1-\theta_{2}(\lambda_{2},m) \bigr) \frac{\ln ^{p(1-\lambda_{1})-1}(m-\xi)}{(m-\xi)^{1-p}} \\ &\qquad {} + \bigl(1-\theta_{3}(\lambda_{2},m) \bigr) \frac{\ln^{p(1-\lambda _{1})-1}(m+\xi)}{(m+\xi)^{1-p}} \biggr] a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl\{ \sum_{n=2}^{\infty} \biggl[ \frac{\ln^{q(1-\lambda _{2})-1}(n-\eta)}{(n-\eta)^{1-q}}+\frac{\ln^{q(1-\lambda _{2})-1}(n+\eta)}{(n+\eta)^{1-q}} \biggr] b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(33)
In particular, for \(\xi=\eta=0\), \(\lambda=1\), \(\lambda_{1}=\lambda _{2}=\frac{1}{2}\) in (33), setting
$$ \theta(m):=\frac{1}{\pi} \int_{0}^{\frac{\ln2}{\ln m}}\frac{u^{-1/2}}{1+u}\,du=O \biggl( \frac{1}{\ln^{1/2}m} \biggr) \in(0,1), $$
we have the following reverse Mulholland inequality (2) with the best possible constant π:
$$\begin{aligned} \sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac{a_{m}b_{n}}{\ln mn} >&\pi \Biggl[ \sum_{m=2}^{\infty} \bigl(1-\theta(m) \bigr) \frac{\ln^{\frac{p}{2}-1}m}{m^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &{} \times \Biggl( \sum_{n=2}^{\infty} \frac{\ln^{\frac{q}{2}-1}n}{n^{1-q}}b_{n}^{q} \Biggr) ^{\frac{1}{q}}. \end{aligned}$$
(34)

4 Conclusions

In this paper, by introducing multi-parameters, applying the weight coefficients, and using Hermite–Hadamard’s inequality, we give a reverse of the extension of Mulholland’s inequality in the whole plane with the best possible constant factor in Theorems 12. The equivalent forms and a few particular cases are considered. The technique of real analysis is very important as it is the key to proving the reverse equivalent inequalities with the best possible constant factor. The lemmas and theorems provide an extensive account of this type of inequalities.

Acknowledgements

This work is supported by the National Natural Science Foundation (Nos. 61370186, 61640222), and the Science and Technology Planning Project Item of Guangzhou City (No. 201707010229). We are grateful for this help.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH
2.
go back to reference Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) CrossRefMATH Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) CrossRefMATH
3.
5.
go back to reference Hong, Y.: All-sided generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–626 (2001) MathSciNetMATH Hong, Y.: All-sided generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–626 (2001) MathSciNetMATH
6.
go back to reference Laith, E.A.: On some extensions of Hardy–Hilbert’s inequality and applications. J. Inequal. Appl. 2008, Article ID 546828 (2008) MathSciNet Laith, E.A.: On some extensions of Hardy–Hilbert’s inequality and applications. J. Inequal. Appl. 2008, Article ID 546828 (2008) MathSciNet
7.
go back to reference Krnić, M., Pečarić, J.E.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005) MathSciNetMATH Krnić, M., Pečarić, J.E.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005) MathSciNetMATH
8.
go back to reference Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011) MathSciNetCrossRefMATH Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011) MathSciNetCrossRefMATH
9.
go back to reference Rassias, M.T., Yang, B.: A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015) MathSciNetCrossRefMATH Rassias, M.T., Yang, B.: A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015) MathSciNetCrossRefMATH
10.
go back to reference Vandanjav, A., Tserendorj, B., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016) MathSciNetCrossRefMATH Vandanjav, A., Tserendorj, B., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016) MathSciNetCrossRefMATH
11.
go back to reference Yang, B.: On a more accurate Hardy–Hilbert’s type inequality and its applications. Acta Math. Sin. 49(2), 363–368 (2006) MathSciNetMATH Yang, B.: On a more accurate Hardy–Hilbert’s type inequality and its applications. Acta Math. Sin. 49(2), 363–368 (2006) MathSciNetMATH
12.
go back to reference Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007) CrossRefMATH Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007) CrossRefMATH
13.
15.
17.
go back to reference Huang, Q., Yang, B.: A more accurate half-discrete Hilbert inequality with a nonhomogeneous kernel. J. Funct. Spaces Appl. 2013, Article ID 628250 (2013) MathSciNetMATH Huang, Q., Yang, B.: A more accurate half-discrete Hilbert inequality with a nonhomogeneous kernel. J. Funct. Spaces Appl. 2013, Article ID 628250 (2013) MathSciNetMATH
18.
go back to reference Huang, Q., Wang, A., Yang, B.: A more accurate half-discrete Hilbert-type inequality with a general nonhomogeneous kernel and operator expressions. Math. Inequal. Appl. 17(1), 367–388 (2014) MathSciNetMATH Huang, Q., Wang, A., Yang, B.: A more accurate half-discrete Hilbert-type inequality with a general nonhomogeneous kernel and operator expressions. Math. Inequal. Appl. 17(1), 367–388 (2014) MathSciNetMATH
19.
go back to reference Huang, Q., Wu, S., Yang, B.: Parameterized Hilbert-type integral inequalities in the whole plane. Sci. World J. 2014, Article ID 169061 (2014) Huang, Q., Wu, S., Yang, B.: Parameterized Hilbert-type integral inequalities in the whole plane. Sci. World J. 2014, Article ID 169061 (2014)
20.
go back to reference Rassias, M.T., Yang, B.: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408–418 (2014) MathSciNetMATH Rassias, M.T., Yang, B.: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408–418 (2014) MathSciNetMATH
21.
go back to reference Yang, B., Chen, Q.: A more accurate multidimensional Hardy–Hilbert type inequality with a general homogeneous kernel. J. Math. Inequal. 12(1), 113–128 (2018) Yang, B., Chen, Q.: A more accurate multidimensional Hardy–Hilbert type inequality with a general homogeneous kernel. J. Math. Inequal. 12(1), 113–128 (2018)
22.
go back to reference Batbold, T., Sawano, Y.: Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces. Math. Inequal. Appl. 20, 263–283 (2017) MathSciNetMATH Batbold, T., Sawano, Y.: Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces. Math. Inequal. Appl. 20, 263–283 (2017) MathSciNetMATH
23.
go back to reference Garayev, M.T., Gurudal, M., Okudan, A.: Hardy–Hilbert’s inequality and power inequalities for Berezin numbers of operators. Math. Inequal. Appl. 19, 883–891 (2016) MathSciNetMATH Garayev, M.T., Gurudal, M., Okudan, A.: Hardy–Hilbert’s inequality and power inequalities for Berezin numbers of operators. Math. Inequal. Appl. 19, 883–891 (2016) MathSciNetMATH
24.
go back to reference He, B., Wang, Q.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431(2), 889–902 (2015) MathSciNetCrossRefMATH He, B., Wang, Q.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431(2), 889–902 (2015) MathSciNetCrossRefMATH
25.
go back to reference Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016) MathSciNetMATH Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016) MathSciNetMATH
26.
27.
go back to reference Chen, Q., Yang, B.: On a more accurate half-discrete Hardy–Hilbert-type inequality related to the kernel of arc tangent function. SpringerPlus 5, 1317 (2016) CrossRef Chen, Q., Yang, B.: On a more accurate half-discrete Hardy–Hilbert-type inequality related to the kernel of arc tangent function. SpringerPlus 5, 1317 (2016) CrossRef
28.
go back to reference Kuang, J.: Applied Inequalities. Shangdong Science Technic Press, Jinan (2010) (in Chinesse) Kuang, J.: Applied Inequalities. Shangdong Science Technic Press, Jinan (2010) (in Chinesse)
Metadata
Title
On a reverse Mulholland’s inequality in the whole plane
Authors
Aizhen Wang
Bicheng Yang
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1634-x

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner