Skip to main content
Top

2016 | OriginalPaper | Chapter

6. On-Chip Fabrication of Drug Delivery Systems

Author : M. Windbergs

Published in: Microsystems for Pharmatechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter provides an overview about the fabrication of drug delivery systems with microfluidic devices. Different microfluidic approaches are presented, describing the basic fabrication principles and highlighting representative examples. Diffusive mixing is preferentially used for controlled precipitation of small particles down to nanometer size. Particles can be collected in suspension or directly be spray dried with specific devices. Emulsion-based approaches are utilized for direct use of liquid emulsions and as templates for semisolid or solid systems ranging from polymer particles and hydrogels up to complex capsules and vesicles. In addition, scale-up approaches for microfluidic devices and recent development of delivery systems based on microfluidic devices for attachment to or implantation into the human body for controlled drug delivery over longer time intervals are presented. Finally, a future perspective is given discussing advantages and challenges of microfluidic approaches for safe and effective drug delivery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554CrossRef Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554CrossRef
2.
go back to reference Wagner V, Dullaart A, Bock A, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1218CrossRef Wagner V, Dullaart A, Bock A, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1218CrossRef
3.
go back to reference Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23CrossRef Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23CrossRef
4.
go back to reference Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912CrossRef Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912CrossRef
5.
go back to reference Anton N, Bally F, Serra CA, Ali A, Arntz Y, Mely Y, Zhao M, Marchioni E, Jakhmola A, Vandamme TF (2012) A new microfluidic setup for precise control of the polymer nanoprecipitation process and lipophilic drug encapsulation. Soft Matter 8:10628–10635CrossRef Anton N, Bally F, Serra CA, Ali A, Arntz Y, Mely Y, Zhao M, Marchioni E, Jakhmola A, Vandamme TF (2012) A new microfluidic setup for precise control of the polymer nanoprecipitation process and lipophilic drug encapsulation. Soft Matter 8:10628–10635CrossRef
6.
go back to reference Koh CG, Kang X, Xie Y, Fei Z, Guan J, Yu B, Zhang X, Lee LJ (2009) Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device. Mol Pharm 6(5):1333–1342CrossRef Koh CG, Kang X, Xie Y, Fei Z, Guan J, Yu B, Zhang X, Lee LJ (2009) Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device. Mol Pharm 6(5):1333–1342CrossRef
7.
go back to reference Chen D, Love KT, Chen Y, Eltoukhy AA, Kastrup C, Sahay G, Jeon A, Dong Y, Whitehead KA, Anderson DG (2012) Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc 134(16):6948–6951CrossRef Chen D, Love KT, Chen Y, Eltoukhy AA, Kastrup C, Sahay G, Jeon A, Dong Y, Whitehead KA, Anderson DG (2012) Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc 134(16):6948–6951CrossRef
8.
go back to reference Thiele J, Windbergs M, Abate AR, Trebbin M, Shum HC, Förster S, Weitz DA (2011) Early development drug formulation on a chip: Fabrication of nanoparticles using a microfluidic spray dryer. Lab Chip 11(14):2362–2368CrossRef Thiele J, Windbergs M, Abate AR, Trebbin M, Shum HC, Förster S, Weitz DA (2011) Early development drug formulation on a chip: Fabrication of nanoparticles using a microfluidic spray dryer. Lab Chip 11(14):2362–2368CrossRef
9.
go back to reference Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef
10.
go back to reference Utada AS, Lorenceau E, Link D, Kaplan P, Stone HW, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541CrossRef Utada AS, Lorenceau E, Link D, Kaplan P, Stone HW, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541CrossRef
11.
go back to reference Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9(6):855–862CrossRef Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9(6):855–862CrossRef
12.
go back to reference Yi GR, Thorsen T, Manoharan VN, Hwang MJ, Jeon SJ, Pine DJ, Quake SR, Yang SM (2003) Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater 15:1300–1304CrossRef Yi GR, Thorsen T, Manoharan VN, Hwang MJ, Jeon SJ, Pine DJ, Quake SR, Yang SM (2003) Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater 15:1300–1304CrossRef
13.
go back to reference Yeh CH, Chen KR, Lin YC (2013) Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules. Microfluid Nanofluid 15:775–784CrossRef Yeh CH, Chen KR, Lin YC (2013) Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules. Microfluid Nanofluid 15:775–784CrossRef
14.
go back to reference Eun YJ, Utada AS, Copeland MF, Takeuchi S, Weibel DB (2010) Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 6(3):260–266CrossRef Eun YJ, Utada AS, Copeland MF, Takeuchi S, Weibel DB (2010) Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 6(3):260–266CrossRef
15.
go back to reference Capretto L, Mazzitelli S, Nastruzzi C (2012) Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device. J Control Release 160(3):409–417CrossRef Capretto L, Mazzitelli S, Nastruzzi C (2012) Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device. J Control Release 160(3):409–417CrossRef
16.
go back to reference Kesselman LR, Shinwary S, Selvaganapathy PR, Hoare T (2012) Synthesis of monodisperse, covalently cross-linked, degradable “smart” microgels using microfluidics. Small 8(7):1092–1098CrossRef Kesselman LR, Shinwary S, Selvaganapathy PR, Hoare T (2012) Synthesis of monodisperse, covalently cross-linked, degradable “smart” microgels using microfluidics. Small 8(7):1092–1098CrossRef
17.
go back to reference Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 44(5):724–728CrossRef Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 44(5):724–728CrossRef
18.
go back to reference Huang KS, Lai TH, Lin CY (2006) Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6(7):954–957CrossRef Huang KS, Lai TH, Lin CY (2006) Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6(7):954–957CrossRef
19.
go back to reference Yang CH, Huang KS, Chang JY (2007) Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 9(2):253–259CrossRef Yang CH, Huang KS, Chang JY (2007) Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 9(2):253–259CrossRef
20.
go back to reference Ogonczyk D, Siek M, Garstecki P (2011) Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics 5:013405–013412CrossRef Ogonczyk D, Siek M, Garstecki P (2011) Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics 5:013405–013412CrossRef
21.
go back to reference Windbergs M, Zhao Y, Heyman J, Weitz DA (2013) Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J Am Chem Soc 135:7933–7937CrossRef Windbergs M, Zhao Y, Heyman J, Weitz DA (2013) Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J Am Chem Soc 135:7933–7937CrossRef
22.
go back to reference Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M (2010) Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4(4):2077–2087CrossRef Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M (2010) Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4(4):2077–2087CrossRef
23.
go back to reference Hood RR, Shao C, Omiatek DM, Vreeland WN, DeVoe DL (2013) Microfluidic synthesis of PEG and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res 30(6):1597–1607CrossRef Hood RR, Shao C, Omiatek DM, Vreeland WN, DeVoe DL (2013) Microfluidic synthesis of PEG and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res 30(6):1597–1607CrossRef
24.
go back to reference Amstad E, Kim SH, Weitz DA (2012) Photo- and thermoresponsive polymersomes for triggered release. Angew Chem Int Ed 51(50):12499–12503CrossRef Amstad E, Kim SH, Weitz DA (2012) Photo- and thermoresponsive polymersomes for triggered release. Angew Chem Int Ed 51(50):12499–12503CrossRef
25.
go back to reference Yobas L, Martens S, Ong WL, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079CrossRef Yobas L, Martens S, Ong WL, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079CrossRef
26.
go back to reference Holtze C (2013) Large-scale droplet production in microfluidic devices—an industrial perspective. J Phys D Appl Phys 46:114008CrossRef Holtze C (2013) Large-scale droplet production in microfluidic devices—an industrial perspective. J Phys D Appl Phys 46:114008CrossRef
27.
go back to reference Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293CrossRef Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293CrossRef
28.
go back to reference Abate AR, Weitz DA (2011) Faster multiple emulsification with drop splitting. Lab Chip 11(11):1911–1915CrossRef Abate AR, Weitz DA (2011) Faster multiple emulsification with drop splitting. Lab Chip 11(11):1911–1915CrossRef
29.
go back to reference Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12(4):802–807CrossRef Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA (2012) High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12(4):802–807CrossRef
30.
go back to reference Lo R, Li PY, Saati S, Agrawal RN, Humayun MS, Meng E (2009) A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices 11(5):959–970CrossRef Lo R, Li PY, Saati S, Agrawal RN, Humayun MS, Meng E (2009) A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices 11(5):959–970CrossRef
31.
go back to reference Pirmoradi FN, Jackson JK, Burt HM, Chiao M (2011) On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip 11(16):2744–2752CrossRef Pirmoradi FN, Jackson JK, Burt HM, Chiao M (2011) On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip 11(16):2744–2752CrossRef
Metadata
Title
On-Chip Fabrication of Drug Delivery Systems
Author
M. Windbergs
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-26920-7_6