Skip to main content
Top

2010 | OriginalPaper | Chapter

On-Chip Thermal Management and Hot-Spot Remediation

Authors : Avram Bar-Cohen, Peng Wang

Published in: Nano-Bio- Electronic, Photonic and MEMS Packaging

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in die heat flux and growing concern over the emergence of on-chip “hot spots.” The application of on-chip high heat flux cooling techniques provides a viable direction for the thermal management of such nanoelectronic components. Following a review of the relevant passive and active thermal management techniques, the physical phenomena underpinning the most promising on-chip thermal management approaches are described. Attention is devoted to thin-film and miniaturized thermoelectric coolers, orthotropic TIMs/heat spreaders, and phase-change microgap coolers for hot-spot remediation and thermal management of these nanoelectronic chips.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Shelling P., Li S., and Goodson K. E. Managing heat for electronics, Materials Today, 2005; 8: 30–35.CrossRef Shelling P., Li S., and Goodson K. E. Managing heat for electronics, Materials Today, 2005; 8: 30–35.CrossRef
3.
go back to reference Mahajan R., Chiu C., and Chrysler G. Cooling a microprocessor chip, Proceedings of IEEE, 2006; 94: 1476–1486.CrossRef Mahajan R., Chiu C., and Chrysler G. Cooling a microprocessor chip, Proceedings of IEEE, 2006; 94: 1476–1486.CrossRef
4.
go back to reference Pedram M., and Nazarian S. Thermal modeling, analysis, and management in VLSI circuits: principles and methods, Proceedings of the IEEE, 2006; 9: 1487–1501.CrossRef Pedram M., and Nazarian S. Thermal modeling, analysis, and management in VLSI circuits: principles and methods, Proceedings of the IEEE, 2006; 9: 1487–1501.CrossRef
5.
go back to reference Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef
6.
go back to reference Mudawar I. Assessment of high-heat-flux thermal management schemes, IEEE Transactions on Components and Packaging Technologies, Part A: Packaging Technologies, 2001; 24: 122–141.CrossRef Mudawar I. Assessment of high-heat-flux thermal management schemes, IEEE Transactions on Components and Packaging Technologies, Part A: Packaging Technologies, 2001; 24: 122–141.CrossRef
7.
go back to reference Garimella S. V. Advances in mesoscale thermal management technologies for microelectronics, Microelectronics Journal, 2006; 37: 1165–1185.CrossRef Garimella S. V. Advances in mesoscale thermal management technologies for microelectronics, Microelectronics Journal, 2006; 37: 1165–1185.CrossRef
8.
go back to reference Sinha S., and Goodson K. E. Thermal conduction in sub-100 nm transistors, Microelectronics Journal, 2006; 37: 1148–1157.CrossRef Sinha S., and Goodson K. E. Thermal conduction in sub-100 nm transistors, Microelectronics Journal, 2006; 37: 1148–1157.CrossRef
10.
go back to reference Jannadham K., Watkins T. R., and Dinwiddie R. B. Novel heat spreader coatings for high power electronic devices, Journal Materials Sciences, 2002; 37: 1363–1376.CrossRef Jannadham K., Watkins T. R., and Dinwiddie R. B. Novel heat spreader coatings for high power electronic devices, Journal Materials Sciences, 2002; 37: 1363–1376.CrossRef
11.
go back to reference Dahlgren S. High-pressure polycrystalline diamond as a cost effective heat spreader, Proceedings of Thermal and Thermomechanical Phenomena in Electronic Systems, (ITHERM 2000), 2000; 1: 23–26. Dahlgren S. High-pressure polycrystalline diamond as a cost effective heat spreader, Proceedings of Thermal and Thermomechanical Phenomena in Electronic Systems, (ITHERM 2000), 2000; 1: 23–26.
12.
go back to reference Goodson K. E., and Ju Y. S. Heat conduction in novel electronic films, Annual Review of Materials Science, 1999; 29: 261–293.CrossRef Goodson K. E., and Ju Y. S. Heat conduction in novel electronic films, Annual Review of Materials Science, 1999; 29: 261–293.CrossRef
13.
go back to reference Le Berre M., Pandraud G., Morfouli P., and Lallemand M. The performance of micro heat pipes measured by integrated sensors, Journal of Micromechanics and Microengineering, 2006; 16: 1047–1050.CrossRef Le Berre M., Pandraud G., Morfouli P., and Lallemand M. The performance of micro heat pipes measured by integrated sensors, Journal of Micromechanics and Microengineering, 2006; 16: 1047–1050.CrossRef
14.
go back to reference Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, Journal of Heat Transfer, 1993; 115: 750–756. Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, Journal of Heat Transfer, 1993; 115: 750–756.
15.
go back to reference Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, ASME Journal of Heat Transfer, 1993; 115: 751–756.CrossRef Peterson G. P., Duncan A. B., and Weichold M. H. Experimental investigation of micro heat pipes fabricated in silicon wafers, ASME Journal of Heat Transfer, 1993; 115: 751–756.CrossRef
16.
go back to reference Mallik A. K., Peterson G. P., and Weichold M. H. Fabrication of vapor deposited micro heat pipes arrays as an integral part of semiconductor devices, IEEE Journal of Microelectromechanical System, 1995; 4: 119–131.CrossRef Mallik A. K., Peterson G. P., and Weichold M. H. Fabrication of vapor deposited micro heat pipes arrays as an integral part of semiconductor devices, IEEE Journal of Microelectromechanical System, 1995; 4: 119–131.CrossRef
17.
go back to reference Karimi G., and Culham J. R. Review and assessment of pulsating heat pipe mechanism for high heat flux electronic cooling, Proceedings of ITHERM, 2004; 2: 52–59. Karimi G., and Culham J. R. Review and assessment of pulsating heat pipe mechanism for high heat flux electronic cooling, Proceedings of ITHERM, 2004; 2: 52–59.
18.
go back to reference Benson D. A., Adkins D. R., Peterson G. P., Mitchell R. T., Tuck M. R., and Palmer D. W., Turning silicon substrates into diamond: micro machining heat pipes, in Proc. Adv. Design Mater. Process, Apr. 1996, pp. 19–21. Benson D. A., Adkins D. R., Peterson G. P., Mitchell R. T., Tuck M. R., and Palmer D. W., Turning silicon substrates into diamond: micro machining heat pipes, in Proc. Adv. Design Mater. Process, Apr. 1996, pp. 19–21.
19.
go back to reference Suman B. Modeling, experiment, and fabrication of micro-grooved heat pipes: an update, Applied Mechanics Reviews, 2007; 60: 107–119.CrossRef Suman B. Modeling, experiment, and fabrication of micro-grooved heat pipes: an update, Applied Mechanics Reviews, 2007; 60: 107–119.CrossRef
20.
go back to reference Akachi H., Structure of a heat pipe, U.S. Patent #4,921,041, 1990. Akachi H., Structure of a heat pipe, U.S. Patent #4,921,041, 1990.
21.
go back to reference Zuo Z. J., North M. T., and Wert K. L. High heat flux heat pipe mechanism for cooling of electronics, IEEE Transactions on Components and Packaging Technologies, 2001; 24: 220–225.CrossRef Zuo Z. J., North M. T., and Wert K. L. High heat flux heat pipe mechanism for cooling of electronics, IEEE Transactions on Components and Packaging Technologies, 2001; 24: 220–225.CrossRef
22.
go back to reference Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.CrossRef Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.CrossRef
23.
go back to reference Lee M., Wong M., and Zohar Y. Integrated micro-heat-pipe fabrication technology, Journal of Microelectromechanical Systems, 2003; 12: 138–146.CrossRef Lee M., Wong M., and Zohar Y. Integrated micro-heat-pipe fabrication technology, Journal of Microelectromechanical Systems, 2003; 12: 138–146.CrossRef
24.
go back to reference Lee M., Wong M., and Zohar Y. Characterization of an integrated micro heat pipe, Journal of Micromechanics and Microengineering, 2003; 13: 58–64.CrossRef Lee M., Wong M., and Zohar Y. Characterization of an integrated micro heat pipe, Journal of Micromechanics and Microengineering, 2003; 13: 58–64.CrossRef
25.
go back to reference Khrustalev D., and Faghri A. Thermal characteristics of conventional and flat miniature axially-grooved heat pipes, Journal of Heat Transfer, 1995; 117: 740–747.CrossRef Khrustalev D., and Faghri A. Thermal characteristics of conventional and flat miniature axially-grooved heat pipes, Journal of Heat Transfer, 1995; 117: 740–747.CrossRef
26.
go back to reference Ma H. B., Lofgreen K. P., and Peterson G. P. An experimental investigation of a high flux heat pipe heat sink, Journal of Electronic Packaging, 2006; 128: 18–22.CrossRef Ma H. B., Lofgreen K. P., and Peterson G. P. An experimental investigation of a high flux heat pipe heat sink, Journal of Electronic Packaging, 2006; 128: 18–22.CrossRef
27.
go back to reference Gillot G., Avenas Y., Cezac N., Poupon G., Schaeffer C., and Fournier E. Silicon heat pipes used as thermal spreaders, IEEE Transactions on Components and Packaging Technologies, 2003; 26: 332–339.CrossRef Gillot G., Avenas Y., Cezac N., Poupon G., Schaeffer C., and Fournier E. Silicon heat pipes used as thermal spreaders, IEEE Transactions on Components and Packaging Technologies, 2003; 26: 332–339.CrossRef
28.
go back to reference Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.CrossRef Lin C., Ponnappan R., and Leland J. High performance miniature heat pipe, International Journal of Heat and Mass Transfer, 2002; 45: 3131–3142.CrossRef
29.
go back to reference Tuckerman D. B., and Pease R. F. W. High-performance heat sinking for VLSI, IEEE Electron Device Letters, 1981; EDL-2: 143–150. Tuckerman D. B., and Pease R. F. W. High-performance heat sinking for VLSI, IEEE Electron Device Letters, 1981; EDL-2: 143–150.
30.
go back to reference Prasher R., Chang J., Sauciuc I., Narasimhan S., Chau D., Chrysler G., Myers A., Prstic A., and Hu C. Nano and micro technology-based next-generation package level cooling solutions, Intel Journal of Technology, 2005; 9: 285–296. Prasher R., Chang J., Sauciuc I., Narasimhan S., Chau D., Chrysler G., Myers A., Prstic A., and Hu C. Nano and micro technology-based next-generation package level cooling solutions, Intel Journal of Technology, 2005; 9: 285–296.
31.
go back to reference Bowers M., and Mudawar I. High-flux boiling in low-flow rate, low-pressure drop mini-channel and microchannel heat sinks, International Journal of Heat and Mass Transfer, 1994; 37: 321–332.CrossRef Bowers M., and Mudawar I. High-flux boiling in low-flow rate, low-pressure drop mini-channel and microchannel heat sinks, International Journal of Heat and Mass Transfer, 1994; 37: 321–332.CrossRef
32.
go back to reference Mudawar I., and Maddox D. E. Enhancement of critical heat flux from high power microelectronic heat sources in a flow channel, Journal of Electronic Packaging, 1990; 112: 241–248.CrossRef Mudawar I., and Maddox D. E. Enhancement of critical heat flux from high power microelectronic heat sources in a flow channel, Journal of Electronic Packaging, 1990; 112: 241–248.CrossRef
33.
go back to reference Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef
34.
go back to reference Garimella S. V., Singhal V., and Liu D. On-chip thermal management with microchannel heat sinks and integrated micropumps, Proceedings of the IEEE, 2006; 94: 1534–1548.CrossRef Garimella S. V., Singhal V., and Liu D. On-chip thermal management with microchannel heat sinks and integrated micropumps, Proceedings of the IEEE, 2006; 94: 1534–1548.CrossRef
35.
go back to reference Prasher R. Thermal interface materials: historical perspective, status and future directions, Proceedings of the IEEE, 2006; 94: 1571–1586.CrossRef Prasher R. Thermal interface materials: historical perspective, status and future directions, Proceedings of the IEEE, 2006; 94: 1571–1586.CrossRef
36.
go back to reference Zhang L., Wang E. N., Koo J. M., Goodson K. E., Santiago J. G., and Kenny T. W. Microscale liquid jet impingement, Proceedings of AMSE IMECE, 2001; Vol.2: Paper No. MEME–23820. Zhang L., Wang E. N., Koo J. M., Goodson K. E., Santiago J. G., and Kenny T. W. Microscale liquid jet impingement, Proceedings of AMSE IMECE, 2001; Vol.2: Paper No. MEME–23820.
37.
go back to reference Wolf D. H., Incropera F. P., and Viskanta R. Local jet impingement boiling heat transfer, International Journal of Heat and Mass Transfer, 1996; 39: 1395–1406.CrossRef Wolf D. H., Incropera F. P., and Viskanta R. Local jet impingement boiling heat transfer, International Journal of Heat and Mass Transfer, 1996; 39: 1395–1406.CrossRef
38.
go back to reference Kiper A. M. Impinging water jet cooling of VLSI circuits, International Communications in Heat and Mass Transfer, 1984; 11: 126–129.CrossRef Kiper A. M. Impinging water jet cooling of VLSI circuits, International Communications in Heat and Mass Transfer, 1984; 11: 126–129.CrossRef
39.
go back to reference Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.CrossRef Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.CrossRef
40.
go back to reference Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.CrossRef Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.CrossRef
41.
go back to reference Fan X., Zeng G., LaBounty C., Bowers J., Croke E., Ahn C., Huxtable S., and Majumdar A. SiGeC/Si superlattice micro-coolers, Applied Physics Letters, 2001; 78: 1580–1600.CrossRef Fan X., Zeng G., LaBounty C., Bowers J., Croke E., Ahn C., Huxtable S., and Majumdar A. SiGeC/Si superlattice micro-coolers, Applied Physics Letters, 2001; 78: 1580–1600.CrossRef
42.
go back to reference Chen C., Yang B., and Liu W. L. Engineering nanostructures for energy conversion, Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures, Faghri, M. and Sunden, B., Eds., Southampton, UK: WIT Press, 2004. Chen C., Yang B., and Liu W. L. Engineering nanostructures for energy conversion, Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures, Faghri, M. and Sunden, B., Eds., Southampton, UK: WIT Press, 2004.
43.
go back to reference Yang B., Liu W. L., Wang K. L., and Chen G. Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice, Applied Physics Letters, 2002; 80: 1758–1760.CrossRef Yang B., Liu W. L., Wang K. L., and Chen G. Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice, Applied Physics Letters, 2002; 80: 1758–1760.CrossRef
44.
go back to reference Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.CrossRef Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.CrossRef
45.
go back to reference Zhang Y., Zeng G. H., Piprek J., Bar-Cohen A., and Shakouri A. Superlattice microrefrigerators fusion bonded with optoelectronic devices, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 658–666.CrossRef Zhang Y., Zeng G. H., Piprek J., Bar-Cohen A., and Shakouri A. Superlattice microrefrigerators fusion bonded with optoelectronic devices, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 658–666.CrossRef
46.
go back to reference Simons R. E., Ellsworth M. J., and Chu R. C. An assessment of module cooling enhancement with thermoelectric coolers, Journal of Heat Transfer, 2005; 127: 76–84.CrossRef Simons R. E., Ellsworth M. J., and Chu R. C. An assessment of module cooling enhancement with thermoelectric coolers, Journal of Heat Transfer, 2005; 127: 76–84.CrossRef
47.
go back to reference Yeh L., and Chu C. Thermal Management of Microelectronic Equipment, New York: ASME Press, 2002.CrossRef Yeh L., and Chu C. Thermal Management of Microelectronic Equipment, New York: ASME Press, 2002.CrossRef
48.
go back to reference Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation, 1983. Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation, 1983.
49.
go back to reference Fan X., Ph. D. Thesis, University of California at Santa Barbara, March 2002. Fan X., Ph. D. Thesis, University of California at Santa Barbara, March 2002.
50.
go back to reference Fleurial J. -P., Borshchevsky A., Ryan M. A., Phillips W., Kolawa E., Kacisch K., and Ewell R., Thermoelectric microcoolers for thermal management applications, Proceedings of 16th International Conference on Thermoelectrics, 1997; 641–645. Fleurial J. -P., Borshchevsky A., Ryan M. A., Phillips W., Kolawa E., Kacisch K., and Ewell R., Thermoelectric microcoolers for thermal management applications, Proceedings of 16th International Conference on Thermoelectrics, 1997; 641–645.
51.
go back to reference Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.CrossRef Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature (London), 2001; 413: 597–602.CrossRef
52.
go back to reference Harman, T.C., Taylor, P. J., Walsh, M. P. and LaForge, B. E., Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, Vol. 297, No. 2229, 2002. Harman, T.C., Taylor, P. J., Walsh, M. P. and LaForge, B. E., Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, Vol. 297, No. 2229, 2002.
53.
go back to reference Fan, X, Zeng, G., Croke, E., LaBounty, C., Shakouri, A., and Bowers, J. E., Integrated SiGeC/Si Micro Cooler, Applied Physics Letters, Vol. 78, No.11, 12 March 2001. Fan, X, Zeng, G., Croke, E., LaBounty, C., Shakouri, A., and Bowers, J. E., Integrated SiGeC/Si Micro Cooler, Applied Physics Letters, Vol. 78, No.11, 12 March 2001.
54.
go back to reference Semenyuk V., Thermoelectric micro modules for spot cooling of high density heat sources, Proceedings of the 20th International Conference on Thermoelectrics, 2001; 391–396. Semenyuk V., Thermoelectric micro modules for spot cooling of high density heat sources, Proceedings of the 20th International Conference on Thermoelectrics, 2001; 391–396.
55.
go back to reference Semenyuk V., Cascade Thermoelectric micro modules for spot cooling high power electronic components, Proceedings of the 21st International Conference on Thermoelectrics, 2002; 531–534. Semenyuk V., Cascade Thermoelectric micro modules for spot cooling high power electronic components, Proceedings of the 21st International Conference on Thermoelectrics, 2002; 531–534.
56.
go back to reference Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M., Ed., Boca Raton, FL: CRC Press, 2006. Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M., Ed., Boca Raton, FL: CRC Press, 2006.
58.
go back to reference Ioffe A. F. Semiconductor Thermoelements and Thermoelectric Cooling, London, UK: Infosearch Ltd., 1957. Ioffe A. F. Semiconductor Thermoelements and Thermoelectric Cooling, London, UK: Infosearch Ltd., 1957.
59.
go back to reference Ettenberg M. H., Jesser M. A., and Rosi E. D., A new n-type and improved p-type pseudo-ternary (Bi2Te3)(Sb2Te3)(Sb2Se3) alloy for Peltier cooling, Proceedings of the 15th International Conference on Thermoelectrics, 1996; 52–56. Ettenberg M. H., Jesser M. A., and Rosi E. D., A new n-type and improved p-type pseudo-ternary (Bi2Te3)(Sb2Te3)(Sb2Se3) alloy for Peltier cooling, Proceedings of the 15th International Conference on Thermoelectrics, 1996; 52–56.
60.
go back to reference Yamashita O., and Tomiyoshi S. Effect of annealing on thermoelectric properties of bismuth telluride compounds, Japan Journal of Applied Physics, 2003; 42: 492–500.CrossRef Yamashita O., and Tomiyoshi S. Effect of annealing on thermoelectric properties of bismuth telluride compounds, Japan Journal of Applied Physics, 2003; 42: 492–500.CrossRef
61.
go back to reference Yamashita O., Tomiyoshi S., and Makita K. Bismuth telluride compounds with high thermoelectric figures of merit, Journal of Applied Physics, 2003; 93: 368–374.CrossRef Yamashita O., Tomiyoshi S., and Makita K. Bismuth telluride compounds with high thermoelectric figures of merit, Journal of Applied Physics, 2003; 93: 368–374.CrossRef
62.
go back to reference Yamashita O., and Tomiyoshi S. High performance n-type bismuth telluride with highly stable thermoelectric figure of merit, Journal of Applied Physics, 2004; 95: 6277–6283.CrossRef Yamashita O., and Tomiyoshi S. High performance n-type bismuth telluride with highly stable thermoelectric figure of merit, Journal of Applied Physics, 2004; 95: 6277–6283.CrossRef
63.
go back to reference Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.CrossRef Shakouri A., and Zhang Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Transactions on Components and Packaging Technologies, 2005; 28: 65–69.CrossRef
64.
go back to reference Pandey R. K., Sahu S. N., and Chandra S., Handbook of Semiconductor Deposition, Ed., New York: Marcel Dekker, 1996. Pandey R. K., Sahu S. N., and Chandra S., Handbook of Semiconductor Deposition, Ed., New York: Marcel Dekker, 1996.
65.
go back to reference Snyder G. J., Lim J. R., Huang C., and Fleurial J. -P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process, Nature Materials, 2003; 2: 528–531.CrossRef Snyder G. J., Lim J. R., Huang C., and Fleurial J. -P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process, Nature Materials, 2003; 2: 528–531.CrossRef
66.
go back to reference da Silva L. W., Kaviany M., and Uher C. Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems, Journal of Applied Physics, 2005; 97: 114903.CrossRef da Silva L. W., Kaviany M., and Uher C. Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems, Journal of Applied Physics, 2005; 97: 114903.CrossRef
67.
go back to reference Böttner H., Nurnus J., Gavrikov A., Kühner G., Jägle M., Künzel C., Eberhard D., Plescher G., Schubert A., and Schlereth K. New thermoelectric components using microsystem technologies, Journal of Microelectromechanical Systems, 2004; 13: 414–420.CrossRef Böttner H., Nurnus J., Gavrikov A., Kühner G., Jägle M., Künzel C., Eberhard D., Plescher G., Schubert A., and Schlereth K. New thermoelectric components using microsystem technologies, Journal of Microelectromechanical Systems, 2004; 13: 414–420.CrossRef
68.
go back to reference Bottner H., Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time, Proceedings of the 24th International Conference on Thermoelectrics, 2005;1–8. Bottner H., Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time, Proceedings of the 24th International Conference on Thermoelectrics, 2005;1–8.
69.
go back to reference Zhou H., Rowe D. M., and Williams S. Peltier effect in a co-evaporated Sb2Te3(P)–Bi2Te3(N) thin film thermocouple, Thin Solid Films, 2002; 408: 270–274.CrossRef Zhou H., Rowe D. M., and Williams S. Peltier effect in a co-evaporated Sb2Te3(P)–Bi2Te3(N) thin film thermocouple, Thin Solid Films, 2002; 408: 270–274.CrossRef
70.
go back to reference Semenyuk V., Miniature thermoelectric modules with increased cooling power, Proceedings of the 25th International Conference on Thermoelectrics, 2006; 322–326. Semenyuk V., Miniature thermoelectric modules with increased cooling power, Proceedings of the 25th International Conference on Thermoelectrics, 2006; 322–326.
71.
go back to reference Semenyuk V., and Ph. D.. Dissertation, Odessa Technological Institute of Food and Refrigeratinbg Engineering, Odessa, USSR, 1967 (in Russian). Semenyuk V., and Ph. D.. Dissertation, Odessa Technological Institute of Food and Refrigeratinbg Engineering, Odessa, USSR, 1967 (in Russian).
72.
go back to reference Hicks L. D., and Dresselhaus M. S. Thermoelectric figure of merit of a one-dimensional conductor, Physics Review B, 1993; 47: 16631–16634.CrossRef Hicks L. D., and Dresselhaus M. S. Thermoelectric figure of merit of a one-dimensional conductor, Physics Review B, 1993; 47: 16631–16634.CrossRef
73.
go back to reference Balandin A., and Wang K. L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells, Journal of Applied Physics, 1998; 84: 6149–6153.CrossRef Balandin A., and Wang K. L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells, Journal of Applied Physics, 1998; 84: 6149–6153.CrossRef
74.
go back to reference Balandin A., and Lazarenkova O. L. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Applied Physics Letters, 2003; 82: 415–417.CrossRef Balandin A., and Lazarenkova O. L. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Applied Physics Letters, 2003; 82: 415–417.CrossRef
75.
go back to reference Yang B., and Chen G. Thermal Conductivity: Theory, Properties and Application, Tritt, T. M., Ed., New York: Kluwer Press, 2005. Yang B., and Chen G. Thermal Conductivity: Theory, Properties and Application, Tritt, T. M., Ed., New York: Kluwer Press, 2005.
76.
go back to reference Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.CrossRef Harman T. C., Taylor P. J., Walsh M. P., and LaForge B. E. Quantum dot superlattice thermoelectric materials and devices, Science, 2002; 297: 2229–2232.CrossRef
77.
go back to reference Venkatasubramanian R., Silvona E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 2001; 413: 597–602.CrossRef Venkatasubramanian R., Silvona E., Colpitts T., and O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 2001; 413: 597–602.CrossRef
78.
go back to reference Mahan G. D., and Woods L. M. Multilayer thermionic refrigeration, Physical Review Letter, 1998; 80: 4016–4019.CrossRef Mahan G. D., and Woods L. M. Multilayer thermionic refrigeration, Physical Review Letter, 1998; 80: 4016–4019.CrossRef
79.
go back to reference Shakouri A., LaBounty C., Piprek J., Abraham P., and Bowers J. E. Thermionic emission cooling in single barrier heterostructures, Applied Physics Letters, 1999; 74: 88–89.CrossRef Shakouri A., LaBounty C., Piprek J., Abraham P., and Bowers J. E. Thermionic emission cooling in single barrier heterostructures, Applied Physics Letters, 1999; 74: 88–89.CrossRef
80.
go back to reference Rowe D. M. Thermoelectrics Handbook Macro to Nano, Boca Raton, FL: CRC Press, 2005.CrossRef Rowe D. M. Thermoelectrics Handbook Macro to Nano, Boca Raton, FL: CRC Press, 2005.CrossRef
81.
go back to reference Venkatasubramanian R., Colpitts T., Liu S., El-Masry N., and Lamvik M. Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics, Applied Physics Letters, 1999; 75: 1104-1106.CrossRef Venkatasubramanian R., Colpitts T., Liu S., El-Masry N., and Lamvik M. Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics, Applied Physics Letters, 1999; 75: 1104-1106.CrossRef
82.
go back to reference Zhang Y., Zeng G., Bar-Cohen A., and Shakouri A. Is ZT the main performance factor for hot spot cooling using 3D microrefrigerators?, IMAPS on Thermal Management, 2005, Oct. 26th –28th, Palo Alto, CA. Zhang Y., Zeng G., Bar-Cohen A., and Shakouri A. Is ZT the main performance factor for hot spot cooling using 3D microrefrigerators?, IMAPS on Thermal Management, 2005, Oct. 26th –28th, Palo Alto, CA.
83.
go back to reference Zeng G., Shakouri A., LaBounty C., Robinson G., Croke E., Abraham P., Fan X., Reese H., and Bowers J. E. SiGe micro-cooler, Electronics Letter, 1999; 35: 2146–2147.CrossRef Zeng G., Shakouri A., LaBounty C., Robinson G., Croke E., Abraham P., Fan X., Reese H., and Bowers J. E. SiGe micro-cooler, Electronics Letter, 1999; 35: 2146–2147.CrossRef
84.
go back to reference Zeng G., Fan X., LaBounty C., Croke E., Zhang Y., Christofferson J., Vashaee D., Shakouri A., and Bowers J. E. Cooling power density of SiGe/Si superlattice micro refrigerators, Proceedings of Thermoelectric Materials Research and Applications, 2003; 793: 43–49. Zeng G., Fan X., LaBounty C., Croke E., Zhang Y., Christofferson J., Vashaee D., Shakouri A., and Bowers J. E. Cooling power density of SiGe/Si superlattice micro refrigerators, Proceedings of Thermoelectric Materials Research and Applications, 2003; 793: 43–49.
85.
go back to reference Fan X., Zeng G., LaBounty C., Vashaee D., Christofferson J., Shakouri A., and Bowers J. E., Integrated cooling for Si-based microelectronics: Proceedings of 20th International Conference on Thermoelectrics, 2001; 405–408. Fan X., Zeng G., LaBounty C., Vashaee D., Christofferson J., Shakouri A., and Bowers J. E., Integrated cooling for Si-based microelectronics: Proceedings of 20th International Conference on Thermoelectrics, 2001; 405–408.
86.
go back to reference Fan X. SiGeC/Si superlattice microcoolers, Applied Physics Letters, 2001; 78: 1580–1582.CrossRef Fan X. SiGeC/Si superlattice microcoolers, Applied Physics Letters, 2001; 78: 1580–1582.CrossRef
87.
go back to reference Fan X., Zeng G., LaBounty C., Croke E., Vashaee D., Shakouri A., Ahn C., and Bowers J. E. High cooling power density SiGe/Si micro coolers, Electronics Letter, 2001; 37: 126–127.CrossRef Fan X., Zeng G., LaBounty C., Croke E., Vashaee D., Shakouri A., Ahn C., and Bowers J. E. High cooling power density SiGe/Si micro coolers, Electronics Letter, 2001; 37: 126–127.CrossRef
88.
go back to reference Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.CrossRef Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.CrossRef
89.
go back to reference Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.CrossRef Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.CrossRef
90.
go back to reference Rowe D. M. CRC Handbook of Thermoelectrics, Roca Raton, FL: CRC Press, 1995.CrossRef Rowe D. M. CRC Handbook of Thermoelectrics, Roca Raton, FL: CRC Press, 1995.CrossRef
91.
go back to reference Zhang Y., Shakouri A., and Zeng G. High-power-density spot cooling using bulk thermoelectrics, Applied Physics Letters, 2004; 85: 2977–2979.CrossRef Zhang Y., Shakouri A., and Zeng G. High-power-density spot cooling using bulk thermoelectrics, Applied Physics Letters, 2004; 85: 2977–2979.CrossRef
92.
go back to reference Nieveld G. D. Thermopiles fabricated using silicon planar technology, Sensors and Actuators, 1983; 3: 179–183.CrossRef Nieveld G. D. Thermopiles fabricated using silicon planar technology, Sensors and Actuators, 1983; 3: 179–183.CrossRef
93.
go back to reference Chapman P. W., Tfte O. N., Zook J. D., and Long D. Electrical properties of heavily doped silicon, Journal of Applied Physics, 1963; 34: 3291–3295.CrossRef Chapman P. W., Tfte O. N., Zook J. D., and Long D. Electrical properties of heavily doped silicon, Journal of Applied Physics, 1963; 34: 3291–3295.CrossRef
94.
go back to reference Wang P., Bar-Cohen A., and Yang B. Analytical modeling of silicon thermoelectric microcooler, Journal of Applied Physics, 2006; 100: 14501.CrossRef Wang P., Bar-Cohen A., and Yang B. Analytical modeling of silicon thermoelectric microcooler, Journal of Applied Physics, 2006; 100: 14501.CrossRef
95.
go back to reference Wang P., and Bar-Cohen A. On-chip hot spot cooling using silicon-based thermoelectric microcooler, Journal of Applied Physics, 2007; 102: 034503.CrossRef Wang P., and Bar-Cohen A. On-chip hot spot cooling using silicon-based thermoelectric microcooler, Journal of Applied Physics, 2007; 102: 034503.CrossRef
96.
go back to reference Solbrekken G. L., Zhang Y., Bar-Cohen A., and Shakouri A., Use of superlattice thermionic emission for “Hotspot” reduction in convectively-cooled chip, Proceedings of 9th ITHERM’s;04, 2004; 610–616. Solbrekken G. L., Zhang Y., Bar-Cohen A., and Shakouri A., Use of superlattice thermionic emission for “Hotspot” reduction in convectively-cooled chip, Proceedings of 9th ITHERM’s;04, 2004; 610–616.
97.
go back to reference Wang P., Bar-Cohen A., Yang B., Solbrekken G. L., Zhang Y., and Shakouri A., Thermoelectric microcooler for hotspot thermal management, Proceedings of InterPACK’s;05, 2005; Paper No: 2005-7324. Wang P., Bar-Cohen A., Yang B., Solbrekken G. L., Zhang Y., and Shakouri A., Thermoelectric microcooler for hotspot thermal management, Proceedings of InterPACK’s;05, 2005; Paper No: 2005-7324.
98.
go back to reference Lide D. R., CRC Handbook of Chemistry and Physics, 75th edition, Boca Raton, USA: CRC Press, 1994. Lide D. R., CRC Handbook of Chemistry and Physics, 75th edition, Boca Raton, USA: CRC Press, 1994.
99.
go back to reference Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation 1983. Kraus A. D., and Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment, New York, USA: Hemisphere Publishing Corporation 1983.
100.
go back to reference Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.CrossRef Geballe T. H., and Hull G. W. Seebeck effect in silicon, Physical Review, 1955; 98: 940–970.CrossRef
101.
go back to reference Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.CrossRef Herwaarden A. W., and Sarro P. M. Thermal sensors based on the Seebeck effect, Sensors and Actuators, 1986; 10: 321–346.CrossRef
102.
go back to reference Horn F. H. Densitometric and electrical investigation of boron in silicon, Physical Review, 1955; 97: 1521–1525.CrossRef Horn F. H. Densitometric and electrical investigation of boron in silicon, Physical Review, 1955; 97: 1521–1525.CrossRef
103.
go back to reference Fritzsche H. A General expression for the thermoelectric power, Solid State Communication, 1971; 9: 1813–1815.CrossRef Fritzsche H. A General expression for the thermoelectric power, Solid State Communication, 1971; 9: 1813–1815.CrossRef
104.
go back to reference Chang C. Y., Fang Y. K., and Sze S. M. Specific contact resistance of metal-semiconductor barriers, Solid State Electronics, 1971; 14: 541–550.CrossRef Chang C. Y., Fang Y. K., and Sze S. M. Specific contact resistance of metal-semiconductor barriers, Solid State Electronics, 1971; 14: 541–550.CrossRef
105.
go back to reference Fan X., Silicon M., Ph. D. Thesis, University of California at Santa Barbara, 2002. Fan X., Silicon M., Ph. D. Thesis, University of California at Santa Barbara, 2002.
106.
go back to reference Yang B., Wang P., and Bar-Cohen A. Mini-contact enhanced thermoelectric cooling of hot spot in high power devices, IEEE Transactions on Components and Packaging Technologies, Part A, 2007; 30: 432–438.CrossRef Yang B., Wang P., and Bar-Cohen A. Mini-contact enhanced thermoelectric cooling of hot spot in high power devices, IEEE Transactions on Components and Packaging Technologies, Part A, 2007; 30: 432–438.CrossRef
107.
go back to reference Narasimhan S., Lofgreen K., Chau D., and Chrysler G., Thin film thermoelectric cooler thermal validation and product thermal performance estimation, Proceedings of 10th Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronics Systems, San Diego, CA, May 30–June 2, 2006. Narasimhan S., Lofgreen K., Chau D., and Chrysler G., Thin film thermoelectric cooler thermal validation and product thermal performance estimation, Proceedings of 10th Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronics Systems, San Diego, CA, May 30–June 2, 2006.
108.
go back to reference Gwinn J. P., and Webb R. L. Performance and testing of thermal interface materials, Microelectronics Journal, 2003; 34: 215–222.CrossRef Gwinn J. P., and Webb R. L. Performance and testing of thermal interface materials, Microelectronics Journal, 2003; 34: 215–222.CrossRef
109.
go back to reference Singhal V., Siegmund T., and Garimella S. V. Optimization of thermal interface materials for electronics cooling applications, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 244–252.CrossRef Singhal V., Siegmund T., and Garimella S. V. Optimization of thermal interface materials for electronics cooling applications, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 244–252.CrossRef
110.
go back to reference Labudovic M., and Li J. Modeling of TE cooling of pump lasers, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 724–730.CrossRef Labudovic M., and Li J. Modeling of TE cooling of pump lasers, IEEE Transactions on Components and Packaging Technologies, 2004; 27: 724–730.CrossRef
111.
go back to reference So W. W., and Lee C. C. Fluxless process of fabricating In-Au joints on copper substrates, IEEE Transactions on Components and Packaging Technologies, 2000; 23: 377–382.CrossRef So W. W., and Lee C. C. Fluxless process of fabricating In-Au joints on copper substrates, IEEE Transactions on Components and Packaging Technologies, 2000; 23: 377–382.CrossRef
113.
go back to reference Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M. , Ed., Boca Raton, FL: CRC Press, 2006. Semenyuk V. Thermoelectric cooling of electro-optic components, Thermoelectrics Handbook: Macro to Nano, Rowe, D. M. , Ed., Boca Raton, FL: CRC Press, 2006.
114.
go back to reference Wijngaards D. D. L., de Graaf G., and Wolffenbuttel R. F. Single-chip micro-thermostat applying both active heating and active cooling, Sensors and Actuators A, 2004; 110: 187–195.CrossRef Wijngaards D. D. L., de Graaf G., and Wolffenbuttel R. F. Single-chip micro-thermostat applying both active heating and active cooling, Sensors and Actuators A, 2004; 110: 187–195.CrossRef
115.
go back to reference Corrèges P., Bugnard E., Millerin C., Masiero A., Andrivet J. P., Bloc A., and Dunant Y. A simple, low-cost and fast Peltier thermoregulation set-up for electrophysiology, Journal of Neuroscience Methods, 1998; 83: 177–184.CrossRef Corrèges P., Bugnard E., Millerin C., Masiero A., Andrivet J. P., Bloc A., and Dunant Y. A simple, low-cost and fast Peltier thermoregulation set-up for electrophysiology, Journal of Neuroscience Methods, 1998; 83: 177–184.CrossRef
116.
go back to reference McKinney C. J., and Nader M. W. A Peltier thermal cycling unit for radiopharmaceutical synthesis, Applied Radiation and Isotopes, 2001; 54: 97–100.CrossRef McKinney C. J., and Nader M. W. A Peltier thermal cycling unit for radiopharmaceutical synthesis, Applied Radiation and Isotopes, 2001; 54: 97–100.CrossRef
117.
go back to reference Elsgaard L., and Jørgensen L. W. A sandwich-designed temperature gradient incubator for studies of microbial temperature responses, Journal of Microbiological Methods, 2002; 49: 19–29.CrossRef Elsgaard L., and Jørgensen L. W. A sandwich-designed temperature gradient incubator for studies of microbial temperature responses, Journal of Microbiological Methods, 2002; 49: 19–29.CrossRef
118.
go back to reference Reid G., Amuzescu B., Zech E., and Flonta M. L. A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging, Journal of Neuroscience Methods, 2001; 111: 1–8.CrossRef Reid G., Amuzescu B., Zech E., and Flonta M. L. A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging, Journal of Neuroscience Methods, 2001; 111: 1–8.CrossRef
119.
go back to reference Hodgson J. Gene sequencing’s industrial revolution, IEEE Spectrum, 2000; 37: 36–42.CrossRef Hodgson J. Gene sequencing’s industrial revolution, IEEE Spectrum, 2000; 37: 36–42.CrossRef
120.
go back to reference Maltezos G., Johnston M., and Scherer A. Thermal management in microfluidics using micro-Peltier junctions, Applied Physics Letters, 2005; 87: 154105.CrossRef Maltezos G., Johnston M., and Scherer A. Thermal management in microfluidics using micro-Peltier junctions, Applied Physics Letters, 2005; 87: 154105.CrossRef
121.
go back to reference Bachmann C., and Bar-Cohen A., Hotspot remediation with anisotropic thermal interface materials, Proceedings of ITHERM 2008, 2008; 238–247. Bachmann C., and Bar-Cohen A., Hotspot remediation with anisotropic thermal interface materials, Proceedings of ITHERM 2008, 2008; 238–247.
122.
go back to reference Muzychka Y. S., Culham J. R., and Yovanovich M. M. Thermal spreading resistance of eccentric heat sources on rectangular flux channels, Journal of Electronic Packaging, 2003; 125: 178–185.CrossRef Muzychka Y. S., Culham J. R., and Yovanovich M. M. Thermal spreading resistance of eccentric heat sources on rectangular flux channels, Journal of Electronic Packaging, 2003; 125: 178–185.CrossRef
123.
go back to reference Smalc M., Thermal performance of natural graphite heat spreaders, Proceedings IPACK2005, San Francisco, California, USA, July 17–22, PaperNumber: IPACK2005-73073. Smalc M., Thermal performance of natural graphite heat spreaders, Proceedings IPACK2005, San Francisco, California, USA, July 17–22, PaperNumber: IPACK2005-73073.
124.
go back to reference Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef Bar-Cohen A., Arik M., and Ohadi M. Direct liquid cooling of high flux micro and nano electronic components, Proceedings of the IEEE, 2006; 94: 1549–1570.CrossRef
125.
go back to reference Montesano M., Annealed pyrolytic graphite, Advanced Materials and Processes, 2006; June:1–3. Montesano M., Annealed pyrolytic graphite, Advanced Materials and Processes, 2006; June:1–3.
126.
go back to reference Viswanath R., Wakharkar V., Watwe A., and Lebonheur V. Thermal performance challenges from silicon to systems, Intel Technology Journal, 2000; Quarter 3: 1–16. Viswanath R., Wakharkar V., Watwe A., and Lebonheur V. Thermal performance challenges from silicon to systems, Intel Technology Journal, 2000; Quarter 3: 1–16.
127.
go back to reference Xong Y., Smalc M. et al., Thermal tests and analysis of thin graphite heat spreader for hot spot reduction in handheld devices, Proceedings of ITHERM 2008, 2008; 583–590. Xong Y., Smalc M. et al., Thermal tests and analysis of thin graphite heat spreader for hot spot reduction in handheld devices, Proceedings of ITHERM 2008, 2008; 583–590.
128.
go back to reference Bergles A. E., and Bar-Cohen A. Immersion cooling of digital computers, Cooling of Electronic Systems, Kakac, S., Yuncu, H. and Hijikata, K., Eds., Boston, MA: Kluwer Academic Publishers, 1994, 539–621 Bergles A. E., and Bar-Cohen A. Immersion cooling of digital computers, Cooling of Electronic Systems, Kakac, S., Yuncu, H. and Hijikata, K., Eds., Boston, MA: Kluwer Academic Publishers, 1994, 539–621
129.
go back to reference Bergles A. E., and Bar-Cohen A. Direct liquid cooling of microelectronic components, Advances in Thermal Modeling of Electronic Components and Systems, A. Bar-Cohen and A. D. Kraus, Eds., New York: ASME, 1990; 2: 241–250. Bergles A. E., and Bar-Cohen A. Direct liquid cooling of microelectronic components, Advances in Thermal Modeling of Electronic Components and Systems, A. Bar-Cohen and A. D. Kraus, Eds., New York: ASME, 1990; 2: 241–250.
130.
go back to reference Kim D., Rahim E., Bar-Cohen A., and Han B., Thermofluid characteristics of two-phase flow in micro-gap channels, Proceedings of ITHERM 2008, 2008; 979–992. Kim D., Rahim E., Bar-Cohen A., and Han B., Thermofluid characteristics of two-phase flow in micro-gap channels, Proceedings of ITHERM 2008, 2008; 979–992.
131.
go back to reference Kim D. W., Ph.D. Thesis, University of Maryland, 2007. Kim D. W., Ph.D. Thesis, University of Maryland, 2007.
132.
go back to reference Bar-Cohen A., and Rahim E. Modeling and prediction of two-phase microgap channel heat transfer characteristics, Heat Transfer Engineering, 2009; 30: 601–625.CrossRef Bar-Cohen A., and Rahim E. Modeling and prediction of two-phase microgap channel heat transfer characteristics, Heat Transfer Engineering, 2009; 30: 601–625.CrossRef
Metadata
Title
On-Chip Thermal Management and Hot-Spot Remediation
Authors
Avram Bar-Cohen
Peng Wang
Copyright Year
2010
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0040-1_12

Premium Partners