Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 4/2021

01-11-2021

On Conditions for the Existence of Cycles in Two Models of a Circadian Oscillator of Mammals

Authors: V. P. Golubyatnikov, O. A. Podkolodnaya, N. L. Podkolodnyy, N. B. Ayupova, N. E. Kirillova, E. V. Yunosheva

Published in: Journal of Applied and Industrial Mathematics | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We construct two nonlinear dynamical systems of the functioning simplest circadian oscillator. Some conditions of the uniqueness of the equilibrium point of these systems are described as well as the conditions for the existence of cycles in their phase portraits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference U. Albrecht, “Timing to Perfection: The Biology of Central and Peripheral Circadian Clocks,” Neuron 74 (2), 246–260 (2012).CrossRef U. Albrecht, “Timing to Perfection: The Biology of Central and Peripheral Circadian Clocks,” Neuron 74 (2), 246–260 (2012).CrossRef
2.
go back to reference S. A. Newman and G. Forgacs, “Complexity and Self-Organization in Biological Development and Evolution,” Complexity in Chemistry, Biology, and Ecology (Springer, 2005), pp. 49–96. S. A. Newman and G. Forgacs, “Complexity and Self-Organization in Biological Development and Evolution,” Complexity in Chemistry, Biology, and Ecology (Springer, 2005), pp. 49–96.
3.
go back to reference B. C. Goodwin, Temporal Organization in Cells: A Dynamic Theory of Cellular Control Processes (Acad. Press, London, 1963). B. C. Goodwin, Temporal Organization in Cells: A Dynamic Theory of Cellular Control Processes (Acad. Press, London, 1963).
4.
go back to reference B. C. Goodwin, “Oscillatory Behavior in Enzymatic Control Processes,” Adv. Enzyme Regul. 3, 425–438 (1965).CrossRef B. C. Goodwin, “Oscillatory Behavior in Enzymatic Control Processes,” Adv. Enzyme Regul. 3, 425–438 (1965).CrossRef
5.
go back to reference O. A. Podkolodnaya, N. N. Tverdokhleb, and N. L. Podkolodnyy, “Computational Modeling of the Cell Autonomous Mammalian Circadian Oscillator,” BMC Syst. Biol. 11, 27–42 (2017).CrossRef O. A. Podkolodnaya, N. N. Tverdokhleb, and N. L. Podkolodnyy, “Computational Modeling of the Cell Autonomous Mammalian Circadian Oscillator,” BMC Syst. Biol. 11, 27–42 (2017).CrossRef
6.
go back to reference S. Almeida, M. Chaves, and F. Delaunay, “Transcription-Based Circadian Mechanism Controls the Duration of Molecular Clock States in Response to Signaling Inputs,” J. Theor. Biol. 484, 110015 (2020).CrossRef S. Almeida, M. Chaves, and F. Delaunay, “Transcription-Based Circadian Mechanism Controls the Duration of Molecular Clock States in Response to Signaling Inputs,” J. Theor. Biol. 484, 110015 (2020).CrossRef
7.
go back to reference T. K. Sato, S. Panda, L. J. Miraglia, T. M. Reyes, R. D. Rudic, P. Mcnamara, K. A. Naik, G. A. Fitzgerald, S. A. Kay, and J. B. Hogenesch, “A Functional Genomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock,” Neuron 43 (4), 527–537 (2004).CrossRef T. K. Sato, S. Panda, L. J. Miraglia, T. M. Reyes, R. D. Rudic, P. Mcnamara, K. A. Naik, G. A. Fitzgerald, S. A. Kay, and J. B. Hogenesch, “A Functional Genomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock,” Neuron 43 (4), 527–537 (2004).CrossRef
8.
go back to reference S. Hastings, J. Tyson, and D. Webster, “Existence of Periodic Solutions for Negative Feedback Cellular Control System,” J. Differential Equations 25, 39–64 (1977).MathSciNetCrossRef S. Hastings, J. Tyson, and D. Webster, “Existence of Periodic Solutions for Negative Feedback Cellular Control System,” J. Differential Equations 25, 39–64 (1977).MathSciNetCrossRef
9.
go back to reference J. Hofbauer, J. Mallet-Paret, and H. L. Smith, “Stable Periodic Solutions for the Hypercycle System,” J. Dyn. Diff. Equat. 3 (3), 423–436 (1991).MathSciNetCrossRef J. Hofbauer, J. Mallet-Paret, and H. L. Smith, “Stable Periodic Solutions for the Hypercycle System,” J. Dyn. Diff. Equat. 3 (3), 423–436 (1991).MathSciNetCrossRef
10.
go back to reference A. A. Akinshin, T. A. Bukharina, V. P. Golubyatnikov, and D. P. Furman, “Mathematical Modeling the Interaction of Two Cells in a Proneuralizing Cluster of Wing Imaginal Bud of D. melanogaster,” Sibir. Zh. Chist. Prikl. Mat. 14 (4), 3–10 (2014).MATH A. A. Akinshin, T. A. Bukharina, V. P. Golubyatnikov, and D. P. Furman, “Mathematical Modeling the Interaction of Two Cells in a Proneuralizing Cluster of Wing Imaginal Bud of D. melanogaster,” Sibir. Zh. Chist. Prikl. Mat. 14 (4), 3–10 (2014).MATH
11.
go back to reference M. B. Elowitz and S. Leibler, “A Synthetic Oscillatory Network of Transcriptional Regulators,” Nature 403, 335–338 (2000).CrossRef M. B. Elowitz and S. Leibler, “A Synthetic Oscillatory Network of Transcriptional Regulators,” Nature 403, 335–338 (2000).CrossRef
12.
go back to reference System Computer Biology, Ed. by N. A. Kolchanov, S. S. Goncharov, V. A. Ivanisenko, and V. A. Likhoshvai (Izd. Sib. Otd. Ross. Akal. Nauk, Novosibirsk, 2008) [in Russian]. System Computer Biology, Ed. by N. A. Kolchanov, S. S. Goncharov, V. A. Ivanisenko, and V. A. Likhoshvai (Izd. Sib. Otd. Ross. Akal. Nauk, Novosibirsk, 2008) [in Russian].
13.
go back to reference T. A. Bukharina, A. A. Akinshin, V. P. Golubyatnikov, and D. P. Furman, “Mathematical and Numerical Models of the Central Regulatory Circuit of the Morphogenesis System of Drosophila,” Sibir. Zh. Ind. Mat. 23 (2), 41–50 (2020) [J. Appl. Ind. Math. 14 (2), 249–255 (2020)].MathSciNetCrossRef T. A. Bukharina, A. A. Akinshin, V. P. Golubyatnikov, and D. P. Furman, “Mathematical and Numerical Models of the Central Regulatory Circuit of the Morphogenesis System of Drosophila,” Sibir. Zh. Ind. Mat. 23 (2), 41–50 (2020) [J. Appl. Ind. Math. 14 (2), 249–255 (2020)].MathSciNetCrossRef
14.
go back to reference L. Glass and J. S. Pasternack, “Stable Oscillations in Mathematical Models of Biological Control Systems,” J. Math. Biology 6, 207–223 (1978).MathSciNetCrossRef L. Glass and J. S. Pasternack, “Stable Oscillations in Mathematical Models of Biological Control Systems,” J. Math. Biology 6, 207–223 (1978).MathSciNetCrossRef
15.
go back to reference R. Smith, “Orbital Stability of Ordinary Differential Equations,” J. Differential Equations 69, 265–287 (1987).MathSciNetCrossRef R. Smith, “Orbital Stability of Ordinary Differential Equations,” J. Differential Equations 69, 265–287 (1987).MathSciNetCrossRef
16.
go back to reference Yu. A. Gaidov, V. P. Golubyatnikov, “About Some Nonlinear Dynamic Systems That Model the Asymmetrical Gene Networks,” Sibir. Zh. Chist. Prikl. Mat. 7 (2), 8–17 (2007). Yu. A. Gaidov, V. P. Golubyatnikov, “About Some Nonlinear Dynamic Systems That Model the Asymmetrical Gene Networks,” Sibir. Zh. Chist. Prikl. Mat. 7 (2), 8–17 (2007).
17.
go back to reference Yu. A. Gaidov, V. P. Golubyatnikov, and E. Mjolsness, “Topological Index of a Model of p53-Mdm2 Circuit,” Inform. Vestnik Vavilov. Obshch. Genet. i Selekts. 13 (1), 160–162 (2009). Yu. A. Gaidov, V. P. Golubyatnikov, and E. Mjolsness, “Topological Index of a Model of p53-Mdm2 Circuit,” Inform. Vestnik Vavilov. Obshch. Genet. i Selekts. 13 (1), 160–162 (2009).
18.
go back to reference N. E. Kirillova, “On Invariant Surfaces in Gene Network Models,” Sibir. Zh. Ind. Mat. 23 (4), 69–76 (2020) [J. Appl. Ind. Math. 14 (4), 666–671 (2020)].MathSciNetCrossRef N. E. Kirillova, “On Invariant Surfaces in Gene Network Models,” Sibir. Zh. Ind. Mat. 23 (4), 69–76 (2020) [J. Appl. Ind. Math. 14 (4), 666–671 (2020)].MathSciNetCrossRef
19.
go back to reference D. V. Anosov, Mappings of a Circle, Vector Fields, and Their Applications (Izd. MTsNMO, Moscow, 2003) [in Russian]. D. V. Anosov, Mappings of a Circle, Vector Fields, and Their Applications (Izd. MTsNMO, Moscow, 2003) [in Russian].
20.
go back to reference R. Abraham and J. Robbins, Transversal Mappings and Flows (W. A. Benjamin Inc., New York, 1967). R. Abraham and J. Robbins, Transversal Mappings and Flows (W. A. Benjamin Inc., New York, 1967).
22.
go back to reference J. S. Griffith, “Mathematics of Cellular Control Processes. I. Negative Feedback to One Gene,” J. Theor. Biol. 20 (2), 202–208 (1968).CrossRef J. S. Griffith, “Mathematics of Cellular Control Processes. I. Negative Feedback to One Gene,” J. Theor. Biol. 20 (2), 202–208 (1968).CrossRef
23.
go back to reference D. Gonze and W. Abou-Jaoudé, “The Goodwin Model: Behind the Hill Function,” PLoS ONE 8 (8), e69573 (2013).CrossRef D. Gonze and W. Abou-Jaoudé, “The Goodwin Model: Behind the Hill Function,” PLoS ONE 8 (8), e69573 (2013).CrossRef
24.
go back to reference J. K. Kim, “Protein Sequestration Versus Hill-Type Repression in Circadian Clock Models,” IET Syst. Biol. 10 (4), 125–135 (2016).CrossRef J. K. Kim, “Protein Sequestration Versus Hill-Type Repression in Circadian Clock Models,” IET Syst. Biol. 10 (4), 125–135 (2016).CrossRef
25.
go back to reference A. C. Liu, H. G. Tran, E.E. Zhang, A. A. Priest, D. K. Welsh, and S. A. Kay, “Redundant Function of REV-ERB-Alpha and Beta and Nonessential Role for Bmal1 Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms,” PLoS Genet. 4 (2), e1000023 (2008).CrossRef A. C. Liu, H. G. Tran, E.E. Zhang, A. A. Priest, D. K. Welsh, and S. A. Kay, “Redundant Function of REV-ERB-Alpha and Beta and Nonessential Role for Bmal1 Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms,” PLoS Genet. 4 (2), e1000023 (2008).CrossRef
26.
go back to reference P. T. Foteinou, A. Venkataraman, L. J. Francey, R. C. Anafi, J. B. Hogenesch, and F. J. Doyle 3rd., “Computational and Experimental Insights into the Circadian Effects of SIRT1,” Proc. Nat. Acad. Sci. U.S.A. 115 (45), 11643–11648 (2018). P. T. Foteinou, A. Venkataraman, L. J. Francey, R. C. Anafi, J. B. Hogenesch, and F. J. Doyle 3rd., “Computational and Experimental Insights into the Circadian Effects of SIRT1,” Proc. Nat. Acad. Sci. U.S.A. 115 (45), 11643–11648 (2018).
27.
go back to reference V. P. Golubyatnikov and N. E. Kirillova, “Phase Portraits of Models of Two Gene Networks,” Mat. Zametki Sev.-Vost. Feder. Univ. 28 (1), 3–11 (2021). V. P. Golubyatnikov and N. E. Kirillova, “Phase Portraits of Models of Two Gene Networks,” Mat. Zametki Sev.-Vost. Feder. Univ. 28 (1), 3–11 (2021).
28.
go back to reference S. Smale, “A Mathematical Model of Two Cells via Turing’s Equation,” in Lecture in Applied Mathematics, Vol. 6 (AMS, 1974), pp. 15–26. S. Smale, “A Mathematical Model of Two Cells via Turing’s Equation,” in Lecture in Applied Mathematics, Vol. 6 (AMS, 1974), pp. 15–26.
Metadata
Title
On Conditions for the Existence of Cycles in Two Models of a Circadian Oscillator of Mammals
Authors
V. P. Golubyatnikov
O. A. Podkolodnaya
N. L. Podkolodnyy
N. B. Ayupova
N. E. Kirillova
E. V. Yunosheva
Publication date
01-11-2021
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 4/2021
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478921040037

Other articles of this Issue 4/2021

Journal of Applied and Industrial Mathematics 4/2021 Go to the issue

Premium Partners