Skip to main content
Top
Published in: Wireless Personal Communications 2/2016

01-01-2016

On Detection in MIMO-OFDM Systems Over Highly Mobile Wireless Channels

Author: Hakan Doğan

Published in: Wireless Personal Communications | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High mobility support of multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems plays a major role in wireless communication systems. Conventional detection approaches for MIMO-OFDM systems assume the channel is constant for at least one OFDM symbol duration. However, the time variation of the channel on account of mobility over an OFDM symbol period causes a loss of subchannel orthogonality which results in inter-carrier interference. In this paper, we propose the space alternating generalized expectation maximization (SAGE) based signal detection for MIMO-OFDM systems and compared by the zero forcing (ZF), minimum mean square error (MMSE), vertical Bell laboratories layered space-time (VBLAST) detection methods by considering complexity and performance tradeoffs. Simulation results show that the SAGE based detection has comparable performance with the VBLAST while needs lower computational complexity. It is also shown that both SAGE and VBLAST have a clear BER performance advantage over the MMSE and ZF detections. We also investigate the sensitivity of detection MIMO-OFDM signals to channel estimation errors by the application of a simple frequency domain based pilot based channel estimation. It is shown that the superiority of the SAGE scheme is also valid in the case of channel imperfections.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, Y., Winters, J., & Sollenberger, N. (2002). MIMO-OFDM for wireless communications: Signal detection with enhanced channel estimation. IEEE Transactions on Communications, 50(9), 1471–1477.CrossRef Li, Y., Winters, J., & Sollenberger, N. (2002). MIMO-OFDM for wireless communications: Signal detection with enhanced channel estimation. IEEE Transactions on Communications, 50(9), 1471–1477.CrossRef
2.
go back to reference Willink, T. (2005). MIMO-OFDM for broadband fixed wireless access. IEE Proceedings on Communications, 152(1), 75–81.CrossRef Willink, T. (2005). MIMO-OFDM for broadband fixed wireless access. IEE Proceedings on Communications, 152(1), 75–81.CrossRef
3.
go back to reference Rossi, P., & Muller, R. (2008). Joint twofold-iterative channel estimation and multiuser detection for MIMO-OFDM systems. IEEE Transaction on Wireless Communications, 7(11 Part 2), 4719–4729.CrossRef Rossi, P., & Muller, R. (2008). Joint twofold-iterative channel estimation and multiuser detection for MIMO-OFDM systems. IEEE Transaction on Wireless Communications, 7(11 Part 2), 4719–4729.CrossRef
4.
go back to reference Glickenstein, H. (2009). High-speed trains [transportation systems]. Vehicular Technology Magazine IEEE, 4(4), 9–14.CrossRef Glickenstein, H. (2009). High-speed trains [transportation systems]. Vehicular Technology Magazine IEEE, 4(4), 9–14.CrossRef
5.
go back to reference Li, Y., & Cimini, L. (2001). Bounds on the interchannel interference of OFDM in time-varying impairments. IEEE Transactions on Communications, 49(3), 401–404.CrossRefMATH Li, Y., & Cimini, L. (2001). Bounds on the interchannel interference of OFDM in time-varying impairments. IEEE Transactions on Communications, 49(3), 401–404.CrossRefMATH
6.
go back to reference Stamoulis, A., Diggavi, S. N., & Al-Dhahir, N. (2002). Intercarrier interference in MIMO-OFDM. IEEE Transaction on Signal Processing, 50(10), 2451–2464.CrossRef Stamoulis, A., Diggavi, S. N., & Al-Dhahir, N. (2002). Intercarrier interference in MIMO-OFDM. IEEE Transaction on Signal Processing, 50(10), 2451–2464.CrossRef
7.
go back to reference Barhumi, I., Leus, G., & Moonen, M. (2006). Equalization for OFDM over doubly-selective channels. IEEE Transaction on Signal Processing, 54(4), 1445–1458.CrossRefMATH Barhumi, I., Leus, G., & Moonen, M. (2006). Equalization for OFDM over doubly-selective channels. IEEE Transaction on Signal Processing, 54(4), 1445–1458.CrossRefMATH
8.
go back to reference Huang, X., & Wu, H.-C. (2007). Robust and efficient intercarrier interference mitigation for OFDM systems in time-varying fading channels. IEEE Transactions on Vehicular Technology, 56(5), 2517–2528.CrossRef Huang, X., & Wu, H.-C. (2007). Robust and efficient intercarrier interference mitigation for OFDM systems in time-varying fading channels. IEEE Transactions on Vehicular Technology, 56(5), 2517–2528.CrossRef
9.
go back to reference Jeon, W. G., Chang, K. H., & Cho, Y. S. (1999). An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels. IEEE Transactions on Communications, 47(1), 27–32.CrossRef Jeon, W. G., Chang, K. H., & Cho, Y. S. (1999). An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels. IEEE Transactions on Communications, 47(1), 27–32.CrossRef
10.
go back to reference Rugini, L., Banelli, P., & Leus, G. (2005). Simple equalization of time-varying channels for OFDM. IEEE Communications Letters, 9(7), 619–621.CrossRef Rugini, L., Banelli, P., & Leus, G. (2005). Simple equalization of time-varying channels for OFDM. IEEE Communications Letters, 9(7), 619–621.CrossRef
11.
go back to reference Schniter, P. (2004). Low-complexity equalization of OFDM in doubly-selective channels. IEEE Transactions on Signal Processing, 52(4), 1002–1011.MathSciNetCrossRef Schniter, P. (2004). Low-complexity equalization of OFDM in doubly-selective channels. IEEE Transactions on Signal Processing, 52(4), 1002–1011.MathSciNetCrossRef
12.
go back to reference Rugini, L., Banelli, P., & Leus, G. (2006). Low-complexity banded equalizers for OFDM systems in Doppler spread channels. EURASIP Journal on Applied Signal Processing, 2006, 1–13.CrossRef Rugini, L., Banelli, P., & Leus, G. (2006). Low-complexity banded equalizers for OFDM systems in Doppler spread channels. EURASIP Journal on Applied Signal Processing, 2006, 1–13.CrossRef
13.
go back to reference Gorokhov, A., & Linnartz, J. P. (2004). Robust OFDM receivers for dispersive time-varying channels: Equalization and channel acquisition. IEEE Transactions on Communications, 52(4), 572–583.CrossRef Gorokhov, A., & Linnartz, J. P. (2004). Robust OFDM receivers for dispersive time-varying channels: Equalization and channel acquisition. IEEE Transactions on Communications, 52(4), 572–583.CrossRef
14.
go back to reference Tonello, A. (2002). Asynchronous multicarrier multiple access: Optimal and sub-optimal detection and decoding. Bell Labs Technical Journal, 7(3), 191–217.CrossRef Tonello, A. (2002). Asynchronous multicarrier multiple access: Optimal and sub-optimal detection and decoding. Bell Labs Technical Journal, 7(3), 191–217.CrossRef
15.
go back to reference Choi, Y.-S., Voltz, P. J., & Cassara, F. A. (2001). On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels. IEEE Transactions on Communications, 49(8), 1375–1387.CrossRefMATH Choi, Y.-S., Voltz, P. J., & Cassara, F. A. (2001). On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels. IEEE Transactions on Communications, 49(8), 1375–1387.CrossRefMATH
16.
go back to reference Tomasin, S., Gorokhov, A., Yang, H., & Linnartz, J.-P. (2005). Iterative interference cancellation and channel estimation for mobile OFDM. IEEE Transactions on Wireless Communications, 4(1), 238–245.CrossRef Tomasin, S., Gorokhov, A., Yang, H., & Linnartz, J.-P. (2005). Iterative interference cancellation and channel estimation for mobile OFDM. IEEE Transactions on Wireless Communications, 4(1), 238–245.CrossRef
17.
go back to reference Hou, S. W., & Ko, C. C. (2009). Intercarrier interference suppression for OFDMA uplink in time-and frequency-selective fading channels. IEEE Transactions on Vehicular Technology, 58(6), 2741–2754.CrossRef Hou, S. W., & Ko, C. C. (2009). Intercarrier interference suppression for OFDMA uplink in time-and frequency-selective fading channels. IEEE Transactions on Vehicular Technology, 58(6), 2741–2754.CrossRef
18.
go back to reference Dogan, H., Panayirci, E., & Poor, H. V. (2010). Low-complexity joint data detection and channel equalisation for highly mobile orthogonal frequency division multiplexing systems. IET Communications, 4(8), 1000–1011.MathSciNetCrossRefMATH Dogan, H., Panayirci, E., & Poor, H. V. (2010). Low-complexity joint data detection and channel equalisation for highly mobile orthogonal frequency division multiplexing systems. IET Communications, 4(8), 1000–1011.MathSciNetCrossRefMATH
19.
go back to reference Hsu, C. Y., & Wu, W. R. (2009). Low-complexity ICI mitigation methods for high-mobility SISO/MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 58(6), 2755–2768.CrossRef Hsu, C. Y., & Wu, W. R. (2009). Low-complexity ICI mitigation methods for high-mobility SISO/MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 58(6), 2755–2768.CrossRef
20.
go back to reference Beheshti, M., Omidi, M., & Doost-Hoseini, A. (2010). Frequency-domain equalization for MIMO-OFDM over doubly selective channels. In 5th International symposium on telecommunications (IST), 2010 (pp. 431–436). Beheshti, M., Omidi, M., & Doost-Hoseini, A. (2010). Frequency-domain equalization for MIMO-OFDM over doubly selective channels. In 5th International symposium on telecommunications (IST), 2010 (pp. 431–436).
21.
go back to reference Park, K.-W., & Cho, Y.-S. (2005). An MIMO-OFDM technique for high-speed mobile channels. IEEE Communications Letters, 9(7), 604–606.CrossRef Park, K.-W., & Cho, Y.-S. (2005). An MIMO-OFDM technique for high-speed mobile channels. IEEE Communications Letters, 9(7), 604–606.CrossRef
22.
go back to reference Zamiri-Jafarian, H., & Pasupathy, S. (2007). Robust and improved channel estimation algorithm for MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 6(6), 2106–2113.CrossRef Zamiri-Jafarian, H., & Pasupathy, S. (2007). Robust and improved channel estimation algorithm for MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 6(6), 2106–2113.CrossRef
23.
go back to reference Pirak, C., Wang, J., Liu, K., & Jitapunkul, S. (2006). Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems. IEEE Transactions on Signal Processing, 54(12), 4706–4716.CrossRef Pirak, C., Wang, J., Liu, K., & Jitapunkul, S. (2006). Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems. IEEE Transactions on Signal Processing, 54(12), 4706–4716.CrossRef
24.
go back to reference Song, W.-G., & Lim, J.-T. (2006). Channel estimation and signal detection for MIMO-OFDM with time varying channels. IEEE Communications Letters, 10(7), 540–542. Song, W.-G., & Lim, J.-T. (2006). Channel estimation and signal detection for MIMO-OFDM with time varying channels. IEEE Communications Letters, 10(7), 540–542.
25.
go back to reference Hardjawana, W., Li, R., Vucetic, B., Li, Y., & Yang, X. (2010). A new iterative channel estimation for high mobility MIMO-OFDM systems. In Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st (pp. 1–5). Hardjawana, W., Li, R., Vucetic, B., Li, Y., & Yang, X. (2010). A new iterative channel estimation for high mobility MIMO-OFDM systems. In Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st (pp. 1–5).
26.
go back to reference Yang, B., Cao, Z., & Letaief, K. B. (2001). Analysis of low-complexity windowed DFT-based MMSE channel estimator for OFDM systems. IEEE Transactions on Communications, 49(11), 1977–1987.CrossRefMATH Yang, B., Cao, Z., & Letaief, K. B. (2001). Analysis of low-complexity windowed DFT-based MMSE channel estimator for OFDM systems. IEEE Transactions on Communications, 49(11), 1977–1987.CrossRefMATH
27.
go back to reference Wu, Y., & Luo, H. (2008). Channel estimation for MIMO-OFDM systems in non-sample-spaced multipath channels. In Congress on Image and Signal Processing, 2008. CISP ’08 (Vol. 5, pp. 88–92). Wu, Y., & Luo, H. (2008). Channel estimation for MIMO-OFDM systems in non-sample-spaced multipath channels. In Congress on Image and Signal Processing, 2008. CISP ’08 (Vol. 5, pp. 88–92).
28.
go back to reference Xie, Y., Li, Q., & Georghiades, C. N. (2007). On some near optimal low complexity detectors for MIMO fading channels. IEEE Transactions on Wireless Communication, 6(4), 1182–1186.CrossRef Xie, Y., Li, Q., & Georghiades, C. N. (2007). On some near optimal low complexity detectors for MIMO fading channels. IEEE Transactions on Wireless Communication, 6(4), 1182–1186.CrossRef
29.
go back to reference Yalcin, M., Akan, A., & Dogan, H. (2012). Low-complexity channel estimation for OFDM systems in high mobility fading channels. Turkish Journal of Electrical Engineering and Computer Science, 20(4), 583–592. Yalcin, M., Akan, A., & Dogan, H. (2012). Low-complexity channel estimation for OFDM systems in high mobility fading channels. Turkish Journal of Electrical Engineering and Computer Science, 20(4), 583–592.
30.
go back to reference Fessler, J., & Hero, A. (1994). Space-alternating generalized expectation-maximization algorithm. IEEE Transactions on Signal Processing, 42(10), 2664–2677.CrossRef Fessler, J., & Hero, A. (1994). Space-alternating generalized expectation-maximization algorithm. IEEE Transactions on Signal Processing, 42(10), 2664–2677.CrossRef
31.
go back to reference Dogan, H. (2008). EM/SAGE based ML channel estimation for uplink DS-CDMA systems over time-varying fading channels. IEEE Communications Letters, 12(10), 740–742.CrossRef Dogan, H. (2008). EM/SAGE based ML channel estimation for uplink DS-CDMA systems over time-varying fading channels. IEEE Communications Letters, 12(10), 740–742.CrossRef
32.
go back to reference Barhumi, I., Leus, G., & Moonen, M. (2003). Optimal training design for MIMO-OFDM systems in mobile wireless channels. IEEE Transactions on Signal Processing, 51(6), 1615–1624.CrossRef Barhumi, I., Leus, G., & Moonen, M. (2003). Optimal training design for MIMO-OFDM systems in mobile wireless channels. IEEE Transactions on Signal Processing, 51(6), 1615–1624.CrossRef
33.
go back to reference Ahmadi, S. (2010). Mobile WiMAX: A systems approach to understanding IEEE 802.16 m radio access technology. Waltham: Academic Press. Ahmadi, S. (2010). Mobile WiMAX: A systems approach to understanding IEEE 802.16 m radio access technology. Waltham: Academic Press.
34.
go back to reference Patzold, M. (2003). Mobile fading channels. New Jersey: Wiley. Patzold, M. (2003). Mobile fading channels. New Jersey: Wiley.
35.
go back to reference “3GPP TS 25.943 V6.0.0, Deployment aspects (Release 6),” 2004-12. “3GPP TS 25.943 V6.0.0, Deployment aspects (Release 6),” 2004-12.
36.
go back to reference Biglieri, E. (2005). Coding for wireless channels. New York: Springer. Biglieri, E. (2005). Coding for wireless channels. New York: Springer.
37.
go back to reference Moiseev, S., Filin, S., Kondakov, M., Garmonov, A., & Savinkov, A. (Sept 2006). Practical propagation channel robust BLER estimation in the OFDM/TDMA and OFDMA broadband wireless access networks. In Vehicular Technology Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th (pp. 1–5). Moiseev, S., Filin, S., Kondakov, M., Garmonov, A., & Savinkov, A. (Sept 2006). Practical propagation channel robust BLER estimation in the OFDM/TDMA and OFDMA broadband wireless access networks. In Vehicular Technology Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th (pp. 1–5).
38.
go back to reference Peng, W., Adachi, F., Ma, S., Wang, J., & Ng, T.-S. (Nov 2008). Effects of channel estimation errors on V-BLAST detection. In Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE (pp. 1–5). Peng, W., Adachi, F., Ma, S., Wang, J., & Ng, T.-S. (Nov 2008). Effects of channel estimation errors on V-BLAST detection. In Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE (pp. 1–5).
Metadata
Title
On Detection in MIMO-OFDM Systems Over Highly Mobile Wireless Channels
Author
Hakan Doğan
Publication date
01-01-2016
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2016
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-015-2952-7

Other articles of this Issue 2/2016

Wireless Personal Communications 2/2016 Go to the issue