Skip to main content
Top
Published in: Designs, Codes and Cryptography 3/2017

21-12-2016

On equivalence of negaperiodic Golay pairs

Author: Ronan Egan

Published in: Designs, Codes and Cryptography | Issue 3/2017

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Associated pairs as defined by Ito (J Algebra 234:651–663, 2000) are pairs of binary sequence of length 2t satisfying certain autocorrelation properties that may be used to construct Hadamard matrices of order 4t. More recently, Balonin and Doković (Inf Control Syst 5:2–17, 2015) use the term negaperiodic Golay pairs. We define extended negaperiodic Golay pairs and prove a one-to-one correspondence with central relative (4t, 2, 4t, 2t)-difference sets in dicyclic groups of order 8t. We present a new approach for computing negaperiodic Golay pairs up to equivalence, and determine conditions where equivalent pairs correspond to equivalent Hadamard matrices. We complete an enumeration of negaperiodic Golay pairs of length 2t for \(1 \le t \le 10\), and sort them into equivalence classes. Some structural properties of negaperiodic Golay pairs are derived.
Literature
1.
go back to reference Arasu K.T.: Sequences and arrays with desirable correlation properties, Information security, coding theory and related combinatorics. In: NATO Science for Peace and Security Series D. Information and Communication Security, vol. 29, pp. 136–171. IOS, Amsterdam (2011). Arasu K.T.: Sequences and arrays with desirable correlation properties, Information security, coding theory and related combinatorics. In: NATO Science for Peace and Security Series D. Information and Communication Security, vol. 29, pp. 136–171. IOS, Amsterdam (2011).
4.
5.
go back to reference Cohen G., Rubie D., Seberry J., Koukouvinos C., Kounias S., Yamada M.: A survey of base sequences, disjoint complementary sequences and \({\rm OD}(4t; t, t, t, t)\). J. Comb. Math. Comb. Comput. 5, 69–104 (1989).MathSciNetMATH Cohen G., Rubie D., Seberry J., Koukouvinos C., Kounias S., Yamada M.: A survey of base sequences, disjoint complementary sequences and \({\rm OD}(4t; t, t, t, t)\). J. Comb. Math. Comb. Comput. 5, 69–104 (1989).MathSciNetMATH
6.
go back to reference Craigen R.: Signed groups, sequences, and the asymptotic existence of Hadamard matrices. J. Comb. Theory Ser. A 71, 241–254 (1995).MathSciNetCrossRefMATH Craigen R.: Signed groups, sequences, and the asymptotic existence of Hadamard matrices. J. Comb. Theory Ser. A 71, 241–254 (1995).MathSciNetCrossRefMATH
7.
8.
go back to reference de Launey W., Flannery D.L.: Algebraic Design Theory. Mathematical Surveys and Monographs, vol. 175. American Mathematical Society, Providence, RI (2011). de Launey W., Flannery D.L.: Algebraic Design Theory. Mathematical Surveys and Monographs, vol. 175. American Mathematical Society, Providence, RI (2011).
9.
go back to reference de Launey W., Flannery D.L., Horadam K.J.: Cocyclic Hadamard matrices and difference sets. Discret. Appl. Math. 102, 47–61 (2000).MathSciNetCrossRefMATH de Launey W., Flannery D.L., Horadam K.J.: Cocyclic Hadamard matrices and difference sets. Discret. Appl. Math. 102, 47–61 (2000).MathSciNetCrossRefMATH
10.
go back to reference Doković D.Ž., Kotsireas I.S.: Periodic Golay pairs of length 72. In: Colbourn, C.J. (ed.) Algebraic Design Theory and Hadamard Matrices. Springer Proceedings in Mathematics & Statistics, vol. 133, pp. 83–92. Springer, Lethbridge (2015). Doković D.Ž., Kotsireas I.S.: Periodic Golay pairs of length 72. In: Colbourn, C.J. (ed.) Algebraic Design Theory and Hadamard Matrices. Springer Proceedings in Mathematics & Statistics, vol. 133, pp. 83–92. Springer, Lethbridge (2015).
11.
go back to reference Egan R., Flannery D.L., Catháin P.Ó.: Classifying cocyclic Butson Hadamard matrices. In: Colbourn, C.J. (ed.) Algebraic Design Theory and Hadamard Matrices, Springer Proceedings in Mathematics & Statistics, vol. 133, pp. 93–106 (2015). Egan R., Flannery D.L., Catháin P.Ó.: Classifying cocyclic Butson Hadamard matrices. In: Colbourn, C.J. (ed.) Algebraic Design Theory and Hadamard Matrices, Springer Proceedings in Mathematics & Statistics, vol. 133, pp. 93–106 (2015).
12.
go back to reference Egan, R.: Topics in cocyclic development of pairwise combinatorial designs. PhD thesis, National University of Ireland, Galway (2015). Egan, R.: Topics in cocyclic development of pairwise combinatorial designs. PhD thesis, National University of Ireland, Galway (2015).
14.
go back to reference Golay M.J.E.: Multislit spectroscopy. J. Opt. Soc. Am. 39, 437–444 (1949).CrossRef Golay M.J.E.: Multislit spectroscopy. J. Opt. Soc. Am. 39, 437–444 (1949).CrossRef
15.
go back to reference Horadam K.J.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton, NJ (2007). Horadam K.J.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton, NJ (2007).
18.
go back to reference Turyn R.J.: Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Comb. Theory (A) 16, 313–333 (1974).MathSciNetCrossRefMATH Turyn R.J.: Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Comb. Theory (A) 16, 313–333 (1974).MathSciNetCrossRefMATH
Metadata
Title
On equivalence of negaperiodic Golay pairs
Author
Ronan Egan
Publication date
21-12-2016
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 3/2017
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0320-6

Other articles of this Issue 3/2017

Designs, Codes and Cryptography 3/2017 Go to the issue

Premium Partner