Skip to main content
Top

2021 | OriginalPaper | Chapter

On Fast Multi-objective Optimization of Antenna Structures Using Pareto Front Triangulation and Inverse Surrogates

Authors : Anna Pietrenko-Dabrowska, Slawomir Koziel, Leifur Leifsson

Published in: Computational Science – ICCS 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Design of contemporary antenna systems is a challenging endeavor, where conceptual developments and initial parametric studies, interleaved with topology evolution, are followed by a meticulous adjustment of the structure dimensions. The latter is necessary to boost the antenna performance as much as possible, and often requires handling several and often conflicting objectives, pertinent to both electrical and field properties of the structure. Unless the designer’s priorities are already established, multi-objective optimization (MO) is the preferred way of yielding the most comprehensive information about the best available design trade-offs. Notwithstanding, MO of antennas has to be carried out at the level of full-wave electromagnetic (EM) simulation models which poses serious difficulties due to high computational costs of the process. Popular mitigation methods include surrogate-assisted procedures; however, rendering reliable metamodels is problematic at higher-dimensional parameter spaces. This paper proposes a simple yet efficient methodology for multi-objective design of antenna structures, which is based on sequential identification of the Pareto-optimal points using inverse surrogates, and triangulation of the already acquired Pareto front representation. The two major benefits of the presented procedure are low computational complexity, and uniformity of the produced Pareto set, as demonstrated using two microstrip structures, a wideband monopole and a planar quasi-Yagi. In both cases, ten-element Pareto sets are generated at the cost of only a few hundreds of EM analyses of the respective devices. At the same time, the savings over the state-of-the-art surrogate-based MO algorithm are as high as seventy percent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ren, Z., Zhao, A., Wu, S.: MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals. IEEE Ant. Wirel. Prop. Lett. 18(7), 1367–1371 (2019)CrossRef Ren, Z., Zhao, A., Wu, S.: MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals. IEEE Ant. Wirel. Prop. Lett. 18(7), 1367–1371 (2019)CrossRef
2.
go back to reference Zhao, A., Ren, Z.: Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. IEEE Ant. Wirel. Prop. Lett. 18(1), 152–156 (2019)MathSciNetCrossRef Zhao, A., Ren, Z.: Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. IEEE Ant. Wirel. Prop. Lett. 18(1), 152–156 (2019)MathSciNetCrossRef
3.
go back to reference Houret, T., Lizzi, L., Ferrero, F., Danchesi, C., Boudaud, S.: DTC-enabled frequency-tunable inverted-F antenna for IoT applications. IEEE Ant. Wirel. Prop. Lett. 19(2), 307–311 (2020)CrossRef Houret, T., Lizzi, L., Ferrero, F., Danchesi, C., Boudaud, S.: DTC-enabled frequency-tunable inverted-F antenna for IoT applications. IEEE Ant. Wirel. Prop. Lett. 19(2), 307–311 (2020)CrossRef
4.
go back to reference Gao, G., Yang¸ C., Hu, B., Zhang, R., Wang, S.: A wide-bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications. IEEE Trans. Ant. Prop. 67(6), 4206–4211 (2019) Gao, G., Yang¸ C., Hu, B., Zhang, R., Wang, S.: A wide-bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications. IEEE Trans. Ant. Prop. 67(6), 4206–4211 (2019)
5.
go back to reference Wang, J., Leach, M., Lim, E.G., Wang, Z., Pei, R., Huang, Y.: An implantable and conformal antenna for wireless capsule endoscopy. IEEE Ant. Wirel. Prop. Lett. 17(7), 1153–1157 (2018) Wang, J., Leach, M., Lim, E.G., Wang, Z., Pei, R., Huang, Y.: An implantable and conformal antenna for wireless capsule endoscopy. IEEE Ant. Wirel. Prop. Lett. 17(7), 1153–1157 (2018)
6.
go back to reference Yang, G., Zhang, S., Li, J., Zhang, Y., Pedersen, G.F.: A multi-band magneto-electric dipole antenna with wide beam-width. IEEE Access 8, 68820–68827 (2020)CrossRef Yang, G., Zhang, S., Li, J., Zhang, Y., Pedersen, G.F.: A multi-band magneto-electric dipole antenna with wide beam-width. IEEE Access 8, 68820–68827 (2020)CrossRef
7.
go back to reference Tan, L., Wu, R., Poo, Y.: Magnetically reconfigurable SIW antenna with tunable frequencies and polarizations. IEEE Trans. Ant. Prop. 63(6), 2772–2776 (2015)MathSciNetCrossRef Tan, L., Wu, R., Poo, Y.: Magnetically reconfigurable SIW antenna with tunable frequencies and polarizations. IEEE Trans. Ant. Prop. 63(6), 2772–2776 (2015)MathSciNetCrossRef
8.
go back to reference Kaddour, A., Bories, S., Bellion, A., Delaveaud, C.: 3-D-printed compact wideband magnetoelectric dipoles with circular polarization. IEEE Ant. Wirel. Prop. Lett. 17(11), 2026–2030 (2018)CrossRef Kaddour, A., Bories, S., Bellion, A., Delaveaud, C.: 3-D-printed compact wideband magnetoelectric dipoles with circular polarization. IEEE Ant. Wirel. Prop. Lett. 17(11), 2026–2030 (2018)CrossRef
9.
go back to reference Koziel, S., Cheng, Q.S., Li, S.: Optimization-driven antenna design framework with multiple performance constraints. Int. J. RF Microwave CAE 28(4), e21208 (2018)CrossRef Koziel, S., Cheng, Q.S., Li, S.: Optimization-driven antenna design framework with multiple performance constraints. Int. J. RF Microwave CAE 28(4), e21208 (2018)CrossRef
10.
go back to reference Koziel, S., Pietrenko-Dabrowska, A.: Expedited feature-based quasi-global optimization of multi-band antennas with Jacobian variability tracking. IEEE Access. 8, 83907–83915 (2020)CrossRef Koziel, S., Pietrenko-Dabrowska, A.: Expedited feature-based quasi-global optimization of multi-band antennas with Jacobian variability tracking. IEEE Access. 8, 83907–83915 (2020)CrossRef
11.
go back to reference Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)MathSciNetCrossRef Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)MathSciNetCrossRef
12.
go back to reference Zhao, W.J., Liu, E.X., Wang, B., Gao, S.P., Png, C.E.: Differential evolutionary optimization of an equivalent dipole model for electromagnetic emission analysis. IEEE Trans. Electromagn. Comp. 60(6), 1635–1639 (2018)CrossRef Zhao, W.J., Liu, E.X., Wang, B., Gao, S.P., Png, C.E.: Differential evolutionary optimization of an equivalent dipole model for electromagnetic emission analysis. IEEE Trans. Electromagn. Comp. 60(6), 1635–1639 (2018)CrossRef
13.
go back to reference Lalbakhsh, A., Afzal, M.U., Esselle, K.P.: Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna. IEEE Ant. Wirel. Prop. Lett. 16, 915 (2017) Lalbakhsh, A., Afzal, M.U., Esselle, K.P.: Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna. IEEE Ant. Wirel. Prop. Lett. 16, 915 (2017)
14.
go back to reference Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Struct. Multidisc. Opt. 41, 853–862 (2010)MathSciNetCrossRef Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Struct. Multidisc. Opt. 41, 853–862 (2010)MathSciNetCrossRef
15.
go back to reference Ullah, U., Koziel, S., Mabrouk, I.B.: Rapid re-design and bandwidth/size trade-offs for compact wideband circular polarization antennas using inverse surrogates and fast EM-based parameter tuning. IEEE Trans. Ant. Prop. 68(1), 81–89 (2019)CrossRef Ullah, U., Koziel, S., Mabrouk, I.B.: Rapid re-design and bandwidth/size trade-offs for compact wideband circular polarization antennas using inverse surrogates and fast EM-based parameter tuning. IEEE Trans. Ant. Prop. 68(1), 81–89 (2019)CrossRef
16.
go back to reference Mirjalili, S., Dong, J.S.: Multi-objective Optimization Using Artificial Intelligence Techniques. Springer Briefs in Applied Sciences and Technology, New York (2019) Mirjalili, S., Dong, J.S.: Multi-objective Optimization Using Artificial Intelligence Techniques. Springer Briefs in Applied Sciences and Technology, New York (2019)
17.
go back to reference Carvalho, R., Saldanha, R.R., Gomes, B.N., Lisboa, A.C., Martins, A.X.: A multi objective evolutionary algorithm based on decomposition for optimal design of Yagi-Uda antennas. IEEE Trans. Magn. 48(2), 803–806 (2012)CrossRef Carvalho, R., Saldanha, R.R., Gomes, B.N., Lisboa, A.C., Martins, A.X.: A multi objective evolutionary algorithm based on decomposition for optimal design of Yagi-Uda antennas. IEEE Trans. Magn. 48(2), 803–806 (2012)CrossRef
18.
go back to reference Goudos, S.K., Gotsis, K.A., Siakavara, K., Vafiadis, E.E., Sahalos, J.N.: A multi-objective approach to subarrayed linear antenna design based on memetic differential evolution. IEEE Trans. Ant. Prop. 61(6), 3042–3052 (2013)MathSciNetCrossRef Goudos, S.K., Gotsis, K.A., Siakavara, K., Vafiadis, E.E., Sahalos, J.N.: A multi-objective approach to subarrayed linear antenna design based on memetic differential evolution. IEEE Trans. Ant. Prop. 61(6), 3042–3052 (2013)MathSciNetCrossRef
19.
go back to reference Zhang, Y., Liu, X., Bao, F., Chi, J., Zhang, C., Liu., P.: Particle swarm optimization with adaptive learning strategy. Knowl. Based Syst. 196 (2020). Article number 105789 Zhang, Y., Liu, X., Bao, F., Chi, J., Zhang, C., Liu., P.: Particle swarm optimization with adaptive learning strategy. Knowl. Based Syst. 196 (2020). Article number 105789
20.
go back to reference Maddio, S., Pelosi, G., Righini, M., Selleri, S.: A multi-objective invasive weed optimization for broad band sequential rotation networks. In: IEEE International Symposium Antenna Proposition, Boston, pp. 955–956 (2018) Maddio, S., Pelosi, G., Righini, M., Selleri, S.: A multi-objective invasive weed optimization for broad band sequential rotation networks. In: IEEE International Symposium Antenna Proposition, Boston, pp. 955–956 (2018)
21.
go back to reference Zhu, D.Z., Werner, P.L., Werner, D.H.: Multi-objective lazy ant colony optimization for frequency selective surface design. In: IEEE International Symposium Antenna Proposition, Boston, pp. 2035–2036 (2018) Zhu, D.Z., Werner, P.L., Werner, D.H.: Multi-objective lazy ant colony optimization for frequency selective surface design. In: IEEE International Symposium Antenna Proposition, Boston, pp. 2035–2036 (2018)
22.
go back to reference Ranjan, P., Mahto, S.K., Choubey, A.: BWDO algorithm and its application in antenna array and pixelated metasurface synthesis. IET Microwaves Ant. Prop. 13(9), 1263–1270 (2019)CrossRef Ranjan, P., Mahto, S.K., Choubey, A.: BWDO algorithm and its application in antenna array and pixelated metasurface synthesis. IET Microwaves Ant. Prop. 13(9), 1263–1270 (2019)CrossRef
23.
go back to reference Zhang, C., Fu, X., Peng, S., Wang, Y., Chang, J.: New multi-objective optimisation algorithm for uniformly excited aperiodic array synthesis. IET Microwaves Ant. Prop. 13(2), 171–177 (2019)CrossRef Zhang, C., Fu, X., Peng, S., Wang, Y., Chang, J.: New multi-objective optimisation algorithm for uniformly excited aperiodic array synthesis. IET Microwaves Ant. Prop. 13(2), 171–177 (2019)CrossRef
24.
go back to reference Koziel, S., Bekasiewicz, A.: Multi-objective Design of Antennas Using Surrogate Models. World Scientific, Singapore (2016)MATH Koziel, S., Bekasiewicz, A.: Multi-objective Design of Antennas Using Surrogate Models. World Scientific, Singapore (2016)MATH
25.
go back to reference De Villiers, D.I.L., Couckuyt, I., Dhaene, T.: Multi-objective optimization of reflector antennas using kriging and probability of improvement. In: International Symposium Antenna Proposition, San Diego, pp. 985–986 (2017) De Villiers, D.I.L., Couckuyt, I., Dhaene, T.: Multi-objective optimization of reflector antennas using kriging and probability of improvement. In: International Symposium Antenna Proposition, San Diego, pp. 985–986 (2017)
26.
go back to reference Xiao, S., Liu, G.Q., Zhang, K.L., Jing, Y.Z., Duan, J.H., Di Barba, P., Sykulski, J.K.: Multi-objective Pareto optimization of electromagnetic devices exploiting kriging with Lipschitzian optimized expected improvement. IEEE Trans. Magn. 54(3), 1 (2018). Paper ID 7001704 Xiao, S., Liu, G.Q., Zhang, K.L., Jing, Y.Z., Duan, J.H., Di Barba, P., Sykulski, J.K.: Multi-objective Pareto optimization of electromagnetic devices exploiting kriging with Lipschitzian optimized expected improvement. IEEE Trans. Magn. 54(3), 1 (2018). Paper ID 7001704
27.
go back to reference Xia, B., Ren, Z., Koh, C. S.: Utilizing kriging surrogate models for multi-objective robust optimization of electromagnetic devices. IEEE Trans. Magn. 50(2), 693 (2014). Paper 7017104 Xia, B., Ren, Z., Koh, C. S.: Utilizing kriging surrogate models for multi-objective robust optimization of electromagnetic devices. IEEE Trans. Magn. 50(2), 693 (2014). Paper 7017104
28.
go back to reference Jacobs, J.P.: Characterization by Gaussian processes of finite substrate size effects on gain patterns of microstrip antennas. IET Microwaves Ant. Prop. 10(11), 1189–1195 (2016)CrossRef Jacobs, J.P.: Characterization by Gaussian processes of finite substrate size effects on gain patterns of microstrip antennas. IET Microwaves Ant. Prop. 10(11), 1189–1195 (2016)CrossRef
29.
go back to reference Lv, Z., Wang, L., Han, Z., Zhao, J., Wang, W.: Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization. IEEE J. Automatica Sinica. 6(3), 838–849 (2019)MathSciNetCrossRef Lv, Z., Wang, L., Han, Z., Zhao, J., Wang, W.: Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization. IEEE J. Automatica Sinica. 6(3), 838–849 (2019)MathSciNetCrossRef
30.
go back to reference Koziel, S., Sigurdsson, A.T.: Multi-fidelity EM simulations and constrained surrogate modeling for low-cost multi-objective design optimization of antennas. IET Microwaves Ant. Prop. 12(13), 2025–2029 (2018)CrossRef Koziel, S., Sigurdsson, A.T.: Multi-fidelity EM simulations and constrained surrogate modeling for low-cost multi-objective design optimization of antennas. IET Microwaves Ant. Prop. 12(13), 2025–2029 (2018)CrossRef
31.
go back to reference Koziel, S., Pietrenko-Dabrowska, A.: Rapid multi-objective optimization of antennas using nested kriging surrogates and single-fidelity EM simulation models. Eng. Comp. 37(4), 1491–1512 (2019)CrossRef Koziel, S., Pietrenko-Dabrowska, A.: Rapid multi-objective optimization of antennas using nested kriging surrogates and single-fidelity EM simulation models. Eng. Comp. 37(4), 1491–1512 (2019)CrossRef
32.
go back to reference Koziel, S., Kurgan, P.: Rapid multi-objective design of integrated on-chip inductors by means of Pareto front exploration and design extrapolation. Int. J. Electromagn. Waves Appl. 33(11), 1416–1426 (2019)CrossRef Koziel, S., Kurgan, P.: Rapid multi-objective design of integrated on-chip inductors by means of Pareto front exploration and design extrapolation. Int. J. Electromagn. Waves Appl. 33(11), 1416–1426 (2019)CrossRef
33.
go back to reference Unnsteinsson, S.D., Koziel, S.: Generalized Pareto ranking bisection for computationally feasible multi-objective antenna optimization. Int. J. RF Microwave CAE 28(8), e21406 (2018)CrossRef Unnsteinsson, S.D., Koziel, S.: Generalized Pareto ranking bisection for computationally feasible multi-objective antenna optimization. Int. J. RF Microwave CAE 28(8), e21406 (2018)CrossRef
34.
go back to reference Amrit, A., Leifsson, L., Koziel, S.: Fast multi-objective aerodynamic optimization using sequential domain patching and multi-fidelity models. J. Aircraft 57, 388 (2020)CrossRef Amrit, A., Leifsson, L., Koziel, S.: Fast multi-objective aerodynamic optimization using sequential domain patching and multi-fidelity models. J. Aircraft 57, 388 (2020)CrossRef
35.
go back to reference Liu, Y., Cheng, Q.S., Koziel, S.: A generalized SDP multi-objective optimization method for EM-based microwave device design. Sensors 19(14), 3065 (2019)CrossRef Liu, Y., Cheng, Q.S., Koziel, S.: A generalized SDP multi-objective optimization method for EM-based microwave device design. Sensors 19(14), 3065 (2019)CrossRef
36.
go back to reference Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)MATH Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)MATH
37.
go back to reference Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)CrossRef Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)CrossRef
38.
go back to reference Borouchaki, H., George, P.L., Lo, S.H.: Optimal Delaunay point insertion. Int. J. Numerical Methods Eng. 39(20), 3407–3437 (1996)MathSciNetCrossRef Borouchaki, H., George, P.L., Lo, S.H.: Optimal Delaunay point insertion. Int. J. Numerical Methods Eng. 39(20), 3407–3437 (1996)MathSciNetCrossRef
39.
40.
go back to reference Haq, M.A., Koziel, S.: Simulation-based optimization for rigorous assessment of ground plane modifications in compact UWB antenna design. Int. J. RF Microwave CAE 28(4), e21204 (2018)CrossRef Haq, M.A., Koziel, S.: Simulation-based optimization for rigorous assessment of ground plane modifications in compact UWB antenna design. Int. J. RF Microwave CAE 28(4), e21204 (2018)CrossRef
41.
go back to reference Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000) Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000)
42.
go back to reference Fonseca, C.M.: Multiobjective genetic algorithms with application to control engineering problems. Ph.D. thesis, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield (1995) Fonseca, C.M.: Multiobjective genetic algorithms with application to control engineering problems. Ph.D. thesis, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield (1995)
43.
go back to reference Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microwave Mag. 9(6), 105–122 (2008)CrossRef Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microwave Mag. 9(6), 105–122 (2008)CrossRef
44.
go back to reference Kaneda, N., Deal, W.R., Qian, Y., Waterhouse, R., Itoh, T.: A broad-band planar quasi Yagi antenna. IEEE Trans. Ant. Propag. 50, 1158–1160 (2002)CrossRef Kaneda, N., Deal, W.R., Qian, Y., Waterhouse, R., Itoh, T.: A broad-band planar quasi Yagi antenna. IEEE Trans. Ant. Propag. 50, 1158–1160 (2002)CrossRef
Metadata
Title
On Fast Multi-objective Optimization of Antenna Structures Using Pareto Front Triangulation and Inverse Surrogates
Authors
Anna Pietrenko-Dabrowska
Slawomir Koziel
Leifur Leifsson
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-77970-2_10

Premium Partner