Skip to main content
Top

2017 | OriginalPaper | Chapter

On k-Strong Conflict–Free Multicoloring

Authors : Luisa Gargano, Adele A. Rescigno, Ugo Vaccaro

Published in: Combinatorial Optimization and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \(\mathcal{H}=(\mathcal{V},\mathcal{E})\) be a hypergraph. A k-strong conflict-free coloring of \(\mathcal{H}\) is an assignment of colors to the members of the vertex set \(\mathcal{V}\) such that every hyperedge \(E\in \mathcal{E}\), \(|E|\ge k\), contains k nodes whose colors are pairwise distinct and different from the colors assigned to all the other nodes in E, whereas if \(|E|<k\) all nodes in E get distinct colors. The parameter to optimize is the total number of colors. The need for such colorings originally arose as a problem of frequency assignment for cellular networks, but since then it has found applications in a variety of different areas. In this paper we consider a generalization of the above problem, where one is allowed to assign more than one color to each node. When \(k=1\), our generalization reduces to the conflict-free multicoloring problem introduced by Even et al. [2003], and recently studied by Bärtschi and Grandoni [2015], and Ghaffari et al. [2017]. We motivate our generalized formulation and we point out that it includes a vast class of well known combinatorial and algorithmic problems, when the hypergraph \(\mathcal{H}\) and the parameter k are properly instantiated. Our main result is an algorithm to construct a k-strong conflict-free multicolorings of an input hypergraph \(\mathcal{H}\) that utilizes a total number of colors \(O( \min \{(k+\log ({r}/{k}) )\log {\varGamma }+ k( k+\log ^2 ({r}/{k})), \ (k^2 + r ) \log n \})\), where n is the number of nodes, \(r\) is the maximum hyperedge size, and \({\varGamma }\) is the maximum hyperedge degree; the expected number of colors per node is \(O(\min \{k+\log {\varGamma }, \ (k + \log ({r}/{k})) \log n \})\). Although derived for arbitrary k, our result improves on the corresponding result by Bärtschi and Grandoni [2015], when instantiated for \(k=1\). We also provide lower bounds on the number of colors needed in any k-strong conflict-free multicoloring, thus showing that our algorithm is not too far from being optimal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The Hamming weight of a vector/row is the number of symbols that are different from 0 in the vector/row.
 
2
Essentially, the algorithm works as follows: After a first random evaluation of P, it keeps resampling violated events \(A\in \mathcal{A}\) until none remains.
 
Literature
1.
go back to reference Abam, M.A., de Berg, M., Poon, S.H.: Fault-tolerant conflict-free coloring. In: Proceedings of 20th Canadian Conference on Computational Geometry (CCCG) (2008) Abam, M.A., de Berg, M., Poon, S.H.: Fault-tolerant conflict-free coloring. In: Proceedings of 20th Canadian Conference on Computational Geometry (CCCG) (2008)
2.
go back to reference Abellanas, M., Bose, P., García, J., Hurtado, F., Nicolás, C.M., Ramos, P.: On structural and graph theoretic properties of higher order delaunay graphs. Int. J. Comput. Geom. Appl. 19, 595 (2009)CrossRefMATHMathSciNet Abellanas, M., Bose, P., García, J., Hurtado, F., Nicolás, C.M., Ramos, P.: On structural and graph theoretic properties of higher order delaunay graphs. Int. J. Comput. Geom. Appl. 19, 595 (2009)CrossRefMATHMathSciNet
4.
go back to reference Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. John Wiley & Sons Inc., Hoboken (2008)CrossRefMATH Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. John Wiley & Sons Inc., Hoboken (2008)CrossRefMATH
6.
go back to reference de Berg, M., Leijsen, T., van Renssen, A., Roeloffzen, M., Markovic, A., Woeginger, G.: Dynamic and kinetic conflict-free coloring of intervals with respect to points, arXiv preprint arXiv:1701.03388 (2017) de Berg, M., Leijsen, T., van Renssen, A., Roeloffzen, M., Markovic, A., Woeginger, G.: Dynamic and kinetic conflict-free coloring of intervals with respect to points, arXiv preprint arXiv:​1701.​03388 (2017)
8.
go back to reference Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity. In: Proceedings of 28th STOC, pp. 30–36 (1996) Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity. In: Proceedings of 28th STOC, pp. 30–36 (1996)
9.
go back to reference Cheilaris, P., Gargano, L., Rescigno, A.A., Smorodinsky, S.: Strong conflict-free coloring for intervals. Algorithmica 70(4), 732–749 (2014)CrossRefMATHMathSciNet Cheilaris, P., Gargano, L., Rescigno, A.A., Smorodinsky, S.: Strong conflict-free coloring for intervals. Algorithmica 70(4), 732–749 (2014)CrossRefMATHMathSciNet
11.
go back to reference Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of unknown topology. Theor. Comput. Sci. 302(1–3), 337–364 (2003)CrossRefMATHMathSciNet Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of unknown topology. Theor. Comput. Sci. 302(1–3), 337–364 (2003)CrossRefMATHMathSciNet
13.
go back to reference De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)CrossRefMATHMathSciNet De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)CrossRefMATHMathSciNet
14.
go back to reference Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications. World Scientific, River Edge (2000)MATH Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications. World Scientific, River Edge (2000)MATH
15.
go back to reference Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. World Scientific, Singapore (2006)CrossRefMATH Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. World Scientific, Singapore (2006)CrossRefMATH
16.
go back to reference Dua, A.: Random access with multi-packet reception. IEEE Trans. Wirel. Commun. 7(6), 2280–2288 (2008)CrossRef Dua, A.: Random access with multi-packet reception. IEEE Trans. Wirel. Commun. 7(6), 2280–2288 (2008)CrossRef
17.
go back to reference D’yachkov, A.G., Rykov, V.V.: Bounds on the length of disjunct codes. Problemy Peredachi Informatsii 18(3), 7–13 (1982) D’yachkov, A.G., Rykov, V.V.: Bounds on the length of disjunct codes. Problemy Peredachi Informatsii 18(3), 7–13 (1982)
18.
go back to reference D’yachkov, A.G., Vorobév, I.V., Polyansky, N.A., Shchukin, V.Y.: Bounds on the rate of disjunctive codes. Prob. Inform. Transm. 50(1), 27–56 (2014) D’yachkov, A.G., Vorobév, I.V., Polyansky, N.A., Shchukin, V.Y.: Bounds on the rate of disjunctive codes. Prob. Inform. Transm. 50(1), 27–56 (2014)
19.
go back to reference D’yachkov, A.G., Vorobév, I.V., Polyansky, N.A., Shchukin, V.Y.: Erratum to: bounds on the rate of disjunctive codes. Prob. Inform. Transm. 52(2), 200 (2016). Problems of Information Transmission 50, 27 (2014) D’yachkov, A.G., Vorobév, I.V., Polyansky, N.A., Shchukin, V.Y.: Erratum to: bounds on the rate of disjunctive codes. Prob. Inform. Transm. 52(2), 200 (2016). Problems of Information Transmission 50, 27 (2014)
20.
go back to reference Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of \(r\) others. Israel J. Math. 51, 75–89 (1985)CrossRefMATHMathSciNet Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of \(r\) others. Israel J. Math. 51, 75–89 (1985)CrossRefMATHMathSciNet
21.
go back to reference Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33, 94–136 (2003)CrossRefMATHMathSciNet Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33, 94–136 (2003)CrossRefMATHMathSciNet
23.
go back to reference Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: Proceedings of ACM Symposium on Theory of Computing (STOC) (2017, to appear) Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: Proceedings of ACM Symposium on Theory of Computing (STOC) (2017, to appear)
24.
go back to reference Glebov, R., Szabó, T., Tardos, G.: Conflict-free coloring of graphs. Comb. Prob. Comput. 23(3), 434–448 (2014)CrossRefMATH Glebov, R., Szabó, T., Tardos, G.: Conflict-free coloring of graphs. Comb. Prob. Comput. 23(3), 434–448 (2014)CrossRefMATH
26.
go back to reference Katz, M., Lev-Tov, N., Morgenstern, G.: Conflict-free coloring of points on a line with respect to a set of intervals. Comp. Geom. 45(9), 508–514 (2012)CrossRefMATHMathSciNet Katz, M., Lev-Tov, N., Morgenstern, G.: Conflict-free coloring of points on a line with respect to a set of intervals. Comp. Geom. 45(9), 508–514 (2012)CrossRefMATHMathSciNet
27.
go back to reference Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theor. 10, 363–377 (1964)CrossRefMATH Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theor. 10, 363–377 (1964)CrossRefMATH
28.
go back to reference Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Proceedings of CRYPTO 1999, pp. 609–623 (1999) Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Proceedings of CRYPTO 1999, pp. 609–623 (1999)
30.
go back to reference Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM 57(2), 1–15 (2010)CrossRefMATH Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM 57(2), 1–15 (2010)CrossRefMATH
31.
go back to reference Pach, J., Tardos, G.: Conflict-free colorings of graphs and hypergraphs. Comb. Prob. Comput. 18(5), 819–834 (2009)CrossRefMATH Pach, J., Tardos, G.: Conflict-free colorings of graphs and hypergraphs. Comb. Prob. Comput. 18(5), 819–834 (2009)CrossRefMATH
32.
go back to reference Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming model. In: Proceedings of 50th FOCS, pp. 315–323 (2009) Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming model. In: Proceedings of 50th FOCS, pp. 315–323 (2009)
33.
34.
go back to reference Smorodinsky, S.: Conflict-Free Coloring and its Applications, Geometry – Intuitive, Discrete, and Convex: A Tribute to László Fejes Tóth, pp. 331–389. Springer, Heidelberg (2013). Bárány, I., Böröczky, K.J., Tóth, G.F., Pach, J. (eds.) Smorodinsky, S.: Conflict-Free Coloring and its Applications, Geometry – Intuitive, Discrete, and Convex: A Tribute to László Fejes Tóth, pp. 331–389. Springer, Heidelberg (2013). Bárány, I., Böröczky, K.J., Tóth, G.F., Pach, J. (eds.)
Metadata
Title
On k-Strong Conflict–Free Multicoloring
Authors
Luisa Gargano
Adele A. Rescigno
Ugo Vaccaro
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-71147-8_19

Premium Partner